Families of Discrete Distributions

October 1, 2009

We shall, in general, denote the mass function of a parametric family of discrete distributions by $f_X(x|\theta)$ for the distribution depending on the parameter θ.

1 Discrete Uniform Distributions

X is said to have a discrete uniform $(1,N)$ distribution if the mass function

$$f_X(x|N) = \frac{1}{N}, \quad x = 1, 2, \ldots, N.$$

As we have seen,

$$EX = \frac{N + 1}{2} \quad \text{Var}(X) = \frac{N^2 - 1}{12}.$$

The probability generating function

$$\rho_X(t) = \frac{1}{N} (z + z^2 + \cdots + z^N) = \frac{1}{N} \cdot \frac{z(1 - z^N)}{1 - z}.$$

Exercise 1. Find the mean, variance and probability generating for a uniform (a,b) random variable.

2 Bernoulli Distributions

X is said to have a Bernoulli(p) distribution if the mass function

$$f_X(x|p) = \begin{cases} 1 - p & \text{if } x = 0, \\ p & \text{if } x = 1. \end{cases}$$

$$EX = p \quad \text{Var}(X) = p(1 - p).$$

The probability generating function

$$\rho_X(t) = (1 - p) + pz.$$

3 Binomial Distributions

The binomial random variable is the number of successes in \(n \) Bernoulli trials. Its mass function is

\[
 f_X(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}.
\]

Previous computations have shown us that

\[
 E(X) = np, \quad \text{Var}(X) = np(1-p), \quad M_X(t) = ((1-p) + pt)^n.
\]

4 Hypergeometric Distributions

Consider an urn with \(B \) blue balls and \(G \) green balls. Remove \(K \) and let the random variable \(X \) denote the number of blue balls. Then the value of \(X \) is at most the maximum of \(B \) and \(K \). If \(K > G \), then we might choose all of the green balls. If \(X + x \), then the number of green balls \(K - x \leq G \) and thus, \(x \geq K - G \).

The mass function for \(X \) is

\[
 f_X(x|B,G,K) = \binom{B}{x} \binom{G}{K-x} \binom{B+G}{K}, \quad x = \max\{0, K - G\}, \ldots, \min\{B, K\}.
\]

We can rewrite this as

\[
 f_X(x|B,G,K) = \frac{K!}{x!(K-x)!} \frac{(B)_x(G)_{K-x}}{(B+G)_K} = \binom{K}{x} \frac{(B)_x(G)_{K-x}}{(B+G)_K}.
\]

This is an example of sampling without replacement. If we were to choose the balls one-by-one returning the balls to the urn after each choice, then we would be sampling with replacement. This returns us to the case of \(K \) Bernoulli trials with success parameter \(p = G/(B+G) \). In the case the mass function for \(Y \), the number of green balls is

\[
 f_Y(y|B,G,K) = \binom{K}{y} \frac{B^y G^{K-y}}{(B+G)^K}.
\]

Let \(Y_i \) be a Bernoulli random variable indicating whether or not the color of the \(i \)-th is blue. Thus, its mean

\[
 EY_i = \frac{B}{B+G}.
\]

The random variable \(Y = Y_1 + Y_2 + \cdots + Y_K \) and thus its mean

\[
 EY = EY_1 + EY_2 + \cdots + EY_K = K \frac{B}{B+G}.
\]

We will later be able to compute the variance

\[
 \text{Var}(Y) = K \frac{B}{B+G} \cdot \frac{G(B + G - K)}{(B+G)(B+G-1)}.
\]

If we write \(N = B + G \) and \(p \) as above, then

\[
 \text{Var}(Y) = Kp(1-p) \frac{N-K}{(N-1)}
\]

and thus the variance is reduced by a factor of \((N-K)/(N-1)\) from the case of a binomial random variable.
5 Poisson Distributions

The Poisson distribution is an approximation of the binomial distribution in the can that \(n \) is large and \(p \) is small, but the product \(\lambda = np \) is moderate. In this case

\[
P(X = 0) = \binom{n}{0} p^0 (1 - p)^n = \left(1 - \frac{\lambda}{n}\right)^n \approx e^{-\lambda}
\]

\[
P(X = 1) = \binom{n}{1} p^1 (1 - p)^{n-1} = n \frac{\lambda}{n} \left(1 - \frac{\lambda}{n}\right)^{n-1} \approx \lambda e^{-\lambda}
\]

\[
P(X = 2) = \binom{n}{2} p^2 (1 - p)^{n-2} = \frac{(n \lambda)^2}{2n} \left(1 - \frac{\lambda}{n}\right)^{n-2} \approx \frac{\lambda^2}{2} e^{-\lambda}
\]

\[
\vdots \quad \vdots \quad \vdots
\]

\[
P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} = \frac{(n \lambda)^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x} \approx \frac{\lambda^x}{x!} e^{-\lambda}
\]

because

\[
\frac{(n \lambda)^x}{x!} \approx 1
\]

A random variable \(X \) has a Poisson distribution if its mass function

\[
f_X(x|\lambda) = \frac{\lambda^x}{x!} e^{-\lambda}.
\]

The Taylor series expansion for \(\exp(\lambda) \) show that \(\sum_x f_X(x|\lambda) = 1 \). The generating function

\[
\rho_X(z) = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} e^{-\lambda} z^x = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda z)^x}{x!} = e^{-\lambda} e^{\lambda z} = \exp(\lambda(z - 1)).
\]

To check the approximation of a binomial distribution by a Poisson, note that

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{Pois}(1))</th>
<th>(\text{Bin}(10, 0.1))</th>
<th>(\text{Bin}(100, 0.01))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3679</td>
<td>0.3487</td>
<td>0.3660</td>
</tr>
<tr>
<td>1</td>
<td>0.3679</td>
<td>0.3874</td>
<td>0.3697</td>
</tr>
<tr>
<td>2</td>
<td>0.1839</td>
<td>0.1937</td>
<td>0.1849</td>
</tr>
<tr>
<td>3</td>
<td>0.0613</td>
<td>0.0574</td>
<td>0.0610</td>
</tr>
<tr>
<td>4</td>
<td>0.0153</td>
<td>0.0112</td>
<td>0.0149</td>
</tr>
<tr>
<td>5</td>
<td>0.0031</td>
<td>0.0015</td>
<td>0.0029</td>
</tr>
<tr>
<td>6</td>
<td>0.0005</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Exercise 2. Show that \(EX = \lambda \) and \(\text{Var}(X) = \lambda \).

Exercise 3. Let \(\rho_n \) be the generating function for a binomial random variable based on \(n \) trials with success probability \(\lambda/n \). Show that

\[
\lim_{n \to \infty} \rho_n(z) = \rho(z),
\]

the generating function for a Poisson random variable with parameter \(\lambda \).
6 Geometric Distributions

The geometric random variable is the time of the first success in a sequence of Bernoulli trials.

\[f(x|p) = p^{x-1}(1-p), \quad x = 1, 2, \ldots \]

For this random variable, we have

\[EX = \frac{1}{p}, \quad \text{Var}(X) = - \frac{p}{p^2}, \quad \rho_X(z) = \frac{pz}{1-(1-p)z}. \]

7 Negative Binomial Distributions

The number of failures before of the \(r \)-th success is called a negative binomial random variable. To determine its mass function, note that

\[P\{X = x\} = P\{r - 1 \text{ successes in } x + r - 1 \text{ trials and success on the } x + r\text{-th trial}\} \]
\[= P\{r - 1 \text{ successes in } x + r - 1 \text{ trials}\} \cdot P\{\text{success on the } x + r\text{-th trial}\} \]
\[= \binom{x + r - 1}{r - 1} p^{r-1}(1-p)^x \cdot p = \binom{x + r - 1}{x} p^r(1-p)^x. \]

The generating function

\[\rho_X(z) = \sum_{x=0}^{\infty} \binom{x + r - 1}{x} p^r(1-p)^x z^x = p^r \sum_{x=0}^{\infty} \frac{(x + r - 1)_x}{x!} \alpha^r = (1-\alpha)^{-r} \]

where \(\alpha = (1-p)z \), i.e., \(\rho_X(z) = (1-(1-p)z)^{-r} \).

Exercise 4. Check that the Taylor’s series expansion of \(g(\alpha) = (1-\alpha)^{-r} \) is the infinite sum given above. This gives the power series expansion of a negative power of the binomial. For this reason, \(X \) is called a negative binomial distribution.

Exercise 5. Show that

\[EX = \frac{r}{p}, \quad \text{Var}(X) = \frac{r-1-p}{p^2} \]