
Topic 9: The Law of Large Numbers

October, 2009

If take a sequence of random variables each independent from the other and having a common distribution
X1, X2, . . ., and plot the running average

1
n
Sn =

1
n

(X1 +X2 + · · ·+Xn).

If the common mean for the Xi’s is µ, then

E[
1
n
Sn] =

1
n

(EX1 + EX2 + · · ·+ EXn) =
1
n

(µ+ µ+ · · ·+ µ) =
1
n
nµ = µ.

If the common variance of the Xi’s is σ2, then

Var(
1
n
Sn) =

1
n2

(Var(X1) + Var(X2) + · · ·+ Var(Xn)) =
1
n2

(σ + σ + · · ·+ σ) =
1
n2
nσ =

1
n
σ2.

So the mean of these running averages remains at µ but the variance is inversely proportional to the number of
terms in the sum.

The result is the law of large numbers:

For a sequence of random variables each independent from the other and having a common distributionX1, X2, . . .,

lim
n→∞

1
n
Sn

has a limit if and only if the Xi’s have a common mean µ. In this case the limit is µ.

Example 1. We can look an example by simulating 100 independent normal random variables, mean 68 and standard
deviation 3.5. This is meant to simulate the running average of the heights of independently chosen European males.

> x<-rnorm(100,68,3.5)
> s<-cumsum(x)
> plot(s/n,xlab="n",ylim=c(60,70),type="l")

Example 2. We now simulate 1000 independent Cauchy random variables. These random variables have no mean as
you can see that their running averages do not seem to be converging.

> x<-rcauchy(1000)
> s<-cumsum(x)
> plot(s/n,xlab="n",ylim=c(-6,6),type="l")
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Figure 1: Four simulations of the running average Sn/n, n = 1, 2, . . . , 100 for independent normal random variables, mean 68 and standard
deviation 3.5.

1 Monte Carlo Integration
Monte Carlo methods use stochastic simulations to approximate solutions to questions too difficult to solve analyti-
cally.

For example, if X1, X2, . . . be independent random variables uniformally distributed on the interval [0, 1]. Then

g(X)n =
1
n

n∑
i=1

g(Xi)→
∫ 1

0

g(x) dx = I(g)

with probability 1 as n→∞.
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Figure 2: Four simulations of the running average Sn/n, n = 1, 2, . . . , 1000 for independent Cauchy random variables. Note that the running
averate does not seem to be settling down and is subject to “shocks”.

Exercise 3. Extend this idea to integrals on the interval [a, b],

The error in the estimate of the integral can be estimated by the variance

Var(g(X)n) =
1
n

Var(g(X1)).

where σ2 = Var(g(X1)) =
∫ 1

0
(g(x)− I(g))2 dx.
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Figure 3: Histogram of 1000 Monte Carlo estimates for the integral
R 1
0

R 1
0

R 1
0 32x3/(y + z4 + 1) dx dy dz. The sample standard deviation

σ = 0.187.

We can also use this to evaluate multivariate integrals. For example,

I(g) =
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z) dx dy dz

can be estimated using Monte Carlo integration by generating three sequences of uniform random variables,X1, X2, . . . , Xn,
Y1, Y2, . . . , Yn, and Z1, Z2, . . . Zn.

Then,

I(g) ≈ 1
n

n∑
i=1

g(Xi, Yi, Zi).

> Ig<-rep(0,1000)
> for(i in 1:1000){x<-runif(100);y<-runif(100);z<-runif(100);g<-32*xˆ3/(3*(y+zˆ4+1));
Ig[i]<-mean(g)}

> hist(Ig)
> summary(Ig)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.045 1.507 1.644 1.650 1.788 2.284

To modify this technique for a region [a1, b1]× [a2, b2]× [a3, b3] use indepenent uniform random variables Xi, Yi,
and Zi on the respective intervals, then

1
n

n∑
i=1

g(Xi, Yi, Zi)→ Eg(X1, Y1, Z1) =
1

b1 − a1

1
b2 − a2

1
b3 − a3

∫ b1

a1

∫ b2

a2

∫ b3

a3

g(x, y, z) dz dy dx.

Thus, the estimate for the integral is (b1 − a1)(b2 − a2)(b3 − a3)
∑n

i=1 g(Xi, Yi, Zi)/n.

2 Importance Sampling
Importance sampling methods begin with the observation that we could perform the Monte Carlo integration begin-
ning with Y1, Y2, . . . independent random variables with common densityfY , then define the importance sampling
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weights

w(y) =
g(y)
fY (y)

.

Then

w(Y )n =
1
n

n∑
i=1

w(Yi)→
∫ ∞
−∞

w(y)fY (y) dy =
∫ ∞
−∞

g(y)
fY (y)

fY (y) dy = I(g).

This is an improvement if the variance in the estimator decreases, i.e.,∫ ∞
−∞

(w(y)− I(g))2fY (y) dy = σ2
f << σ2.

The density fY is called the importance sampling function or the proposal density.

Example 4. For the integral ∫ 1

0

e−x/2√
x(1− x)

dx,

we can use Monte Carlo simulation based on uniform random variables.

> Ig<-rep(0,1000)
> for(i in 1:1000){x<-runif(100);g<-exp(-x/2)*1/sqrt(x*(1-x));Ig[i]<-mean(g)}
> summary(Ig)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.970 2.277 2.425 2.484 2.583 8.586

> sqrt(var(Ig))
[1] 0.3938047

Based on a 1000 simulations, we find a sample mean value of 2.425 and a sample standard deviation of 0.394.
If we use as the proposal density a Beta(1/2, 1/2), then

fY (y) =
1
π
y1/2−1(1− y)1/2−1

on the interval [0, 1]. Thus the weight
w(y) = πe−y/2.

> IS<-rep(0,1000)
[1] 0.0002105915
> for(i in 1:1000){y<-rbeta(100,1/2,1/2);w<-pi*exp(-y/2);IS[i]<-mean(w)}
> summary(IS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.321 2.455 2.483 2.484 2.515 2.609

> sqrt(var(IS))
[1] 0.04377021

Based on a 1000 simulations, we find a sample mean value of 2.484 and a sample standard deviation of 0.044,
about 1/9th the size of the Monte Carlo weright. Part of the gain is illusory. Beta random variables take longer to
simulate. If they require a factor more than 81 to simulate, then the extra work needed to create a good importance
sample is not helpful in producing a more accurate estimate for the integral.
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