Homogeneous Linear Equations

June 16, 2016

1 Introduction

We now begin a careful examination of homogeneous second-order constant-coefficient differential equations

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

The phrasing homogeneous refer to the fact that the right side of the equation is 0 . In term of the mass-spring oscillator, we are examining the case of no forcing. In reference to this example, we will denote the independent variable by t.

The next exercise consists two quick observations.
Exercise 1. - The function $y(t)=0$ is a solution to (1).

- If y_{1} and y_{2} are solutions to (1) and c_{1} and c_{2} are real numbers, then

$$
\begin{equation*}
c_{1} y_{1}(t)+c_{2} y_{2}(t) \tag{2}
\end{equation*}
$$

is a solution to (1).
The second item makes the important statement that a linear combination of solutions to a linear differential equation is also a solution.

We will begin by looking at solutions of the form $y(t)=e^{r t}$ and discover which values of r result in y being a solution to (1).

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =0 \\
a r^{2} e^{r t}+b r e^{r t}+c e^{r t} & =0 \\
e^{r t}\left(a r^{2}+b r+c r\right) & =0
\end{aligned}
$$

Because $e^{r t}$ is never 0, we find that the value r must be a solution to the quadratic equation, know here as the auxiliary equation or characteristic equation.

$$
\begin{equation*}
a r^{2}+b r+c r=0 \tag{3}
\end{equation*}
$$

From the quadratic formula, we have to solutions (or roots).

$$
r_{+}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

We have three classes of solutions depending on the discriinant

$$
d=b^{2}-4 a c
$$

1. The roots are real and distinct $(d>0)$.
2. The roots are repeated $(d=0)$.

3 . The roots are complex and distinct $(d<0)$.

2 Real Distinct Roots to the Auxilliary Equation

Example 2. For the differential equation

$$
\begin{equation*}
2 y^{\prime \prime}+5 y^{\prime}+3 y=0 \tag{4}
\end{equation*}
$$

we have the auxiliary equation

$$
\begin{array}{r}
2 r^{2}+5 r+3=0 \\
(2 r-1)(r+3)=0
\end{array}
$$

Thus we have the two roots

$$
r_{+}=\frac{1}{2} \quad \text { and } \quad r_{-}=-3
$$

Consequently, both

$$
y_{1}(t)=e^{t / 2} \quad \text { and } \quad y_{2}(t)=e^{-3 t}
$$

are solutions to (4). Because the differential equation is linear, we have for any real numbers c_{1} and c_{2},

$$
c_{1} e^{t / 2}+c_{2} e^{-3 t}
$$

is a solution to (4).

3 Properties of the Solutions

Based on this example, let's gather some of the properties of homogeneous second-order constant-coefficient differential equations.

- Given an initial position $y\left(t_{0}\right)=y_{0}$ and an initial slope $y^{\prime}\left(t_{0}\right)=y_{1}$, these differential equations have a unique solution for any real value t. This is the standard formulation for an initial value problem.
- We call the functions $y_{1}, y_{2}, \ldots, y_{k}$ linearly independent if no linear combination of these equations is equal to the zero equation.
- If y_{1} and y_{2} are linearly independent solutions on \mathbb{R}, then we can find values c_{1} and c_{2} so that $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ solves the initial value problem. This amounts to solving two equations (one for y_{0}, one for y_{1}) with two unknowns (c_{1} and c_{2}).

Exercise 3. Show that an equivalent definition of linear independence is that no one of functions can be written as a linear combination of the others. For the case $k=2$ this amounts to saying that the two functions y_{1} and y_{2} are not constant multiples of each other.

4 Real Repeated Roots

If the auxillary equation has the discriminant $d=0$, then $r=r_{-}=r_{+}$. The existence/uniqueness properties for the solution that we can find a second solution that is linearly independent of $y_{1}(t)=e^{r t}$.

Example 4. For the differential equation

$$
\begin{equation*}
y^{\prime \prime}-6 y^{\prime}+9 y=0 \tag{5}
\end{equation*}
$$

we have the auxiliary equation

$$
r^{2}-6 r+9=(r-3)^{2}
$$

we can easily verify that $y_{1}(t)=e^{3 t}$ is a solution. We will now check that $y_{2}(t)=t e^{3 t}$ is also a solution. Notice that y_{1} and y_{2} are linearly independent.

$$
\begin{array}{lll}
y_{2}(t)=t e^{3 t} & = & t e^{3 t} \\
y_{2}^{\prime}(t)=-3 t e^{3 t}+e^{3 t} & =e^{3 t} & -3 t e^{3 t} \\
y_{2}^{\prime \prime}(t)=9 t e^{3 t}+3 e^{3 t}+3 e^{3 t} & =6 e^{3 t} & +9 t e^{3 t}
\end{array}
$$

Thus,

$$
\begin{array}{rll}
9 y_{2}(t) & = & +9 t e^{3 t} \\
-6 y_{2}^{\prime}(t) & =-6 e^{3 t} & -18 t e^{3 t} \\
y_{2}^{\prime \prime}(t) & =+6 e^{3 t} & +9 t e^{3 t}
\end{array}
$$

If we add the two sides of this equation, we find a solution to (5),
Thus, we have the general solution

$$
y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

to (5).
For the initial values $y(0)=1, y^{\prime}(0)=-2$, we have

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(t) & =3 c_{1} e^{3 t}+c_{2}\left(e^{3 t}+3 t e^{3 t}\right) \\
y^{\prime}(0) & =3 c_{1}+c_{2}
\end{aligned}
$$

Thus, $c_{1}=1$ and

$$
-2=3 c_{1}+c_{2}, \quad-2=3+c_{2}, \quad c_{2}=-5
$$

