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For homogeneous second-order constant-coefficient differential equations,

ay′′ + by′ + cy = 0, (1)

we focused our analysis on the auxiliary equation

ar2 + br + cr = 0. (2)

In particular, we considered the discriminant d = b2 − 4ac.

In the previous section we considered the cases d. > 0 and d = 0. Now, we turn to the one remaining
case d < 0 where the roots of (2), r− and r+ are complex and distinct. In particular, the roots are

r− = α− iβ and r+α+ iβ.

where

α = − b

2a
and β =

√
4ac− b2

2a
.

If we follow the same procedure, then we would say that the solutions to (1) are

y1(t) = e(α+iβ)t and y2(t) = e(α−iβ)t

1 Introduction to Exponentials and Complex Numbers

To make sense of e to a complex power, we define

eλ+iθ = eλ(cos θ + i sin θ) (3)

To check that (3) has some of the expected properties, let

ζ1 = λ1 + iθ1 and ζ2 = λ2 + iθ2.

We would like to say that
eζ1eζ2 = eζ1+ζ2 .

Let’s check this
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eζ1eζ2 = eλ1+iθ1eλ2+iθ2 = (eλ1(cos θ1 + i sin θ1))(eλ2(cos θ2 + i sin θ2))

= eλ1eλ2(cos θ1 + i sin θ1))(cos θ2 + i sin θ2))

(Multplication is commutative.)

= eλ1+λ2(cos θ1 cos θ2 + i sin θ1 cos θ2 + i cos θ1 sin θ2 + i2 sin θ1 sin θ2)

(Properties of real exponents and complex multiplication.)

= eλ1+λ2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2))

(i2 = −1)

= eλ1+λ2((cos(θ1 + θ2) + i(sin(θ1 + θ2))

(Identities for the sine and cosine of a sum of angles.)

= e(λ1+iθ1)+(λ+iθ2) = eζ1+ζ2 .

(The definition in (3).)

Next, we take a derivative

d

dt
ei(α+iβ)t =

d

dt

(
eαt(cosβt+ i sinβt)

)
= αeαt(cosβt+ i sinβt) + βeαt(− sinβt+ i cosβt)

= eαt(α(cosβt+ i sinβt) + iβ(α(cosβt+ i sinβt))

= (α+ iβ)eαt(cosβt+ i sinβt)) = (α+ iβ)ei(α+iβ)t

as expected.
Because cosine is even and sine is odd,

cos(−θ) = cos θ and sin(−θ) = − sin θ.

Exercise 1. Show that

cos θ =
1

2
(eiθ + e−iθ). and sin θ =

1

2i
(eiθ − e−iθ).

So both cos θ and sin θ are linear combinations of eiθ and e−iθ and voth eiθ and e−iθ are linear combina-
tions of cos θ and sin θ

2 Example

Example 2. For
y′′ + y = 0

, the auxiilary equation
r2 + 1 = 0

has roots
r− = −i and r+ = i
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The general solution is
y(t) = c1 cos t+ c2 sin t

If y(0) = 3 and y′(0) = −4, then

3 = y(0) = c1

y′(t) = −c1 sin t+ c2 cos t

−4 = y′(0) = c2

Thus,
y(t) = 3 cos t− 4 sin t

Exercise 3. For the general solution to a frictionless spring

my′′ + ky = 0

What do the values c1 and c2 represent.

Example 4. Returning to the damped oscillator with m = 1, b = 2, and k = 2., we have the governing
equation

y′′ + 2y′ + 2y = 0. (4)

The auxiliary equation is
r2 + 2r + 2 = 0

with roots

r =
−2±

√
22 − 4 · 1 · 2

2
=
−2± i

√
4

2
= −1± i.

Thus, the two roots are
r− = −1− i and r+ = −1 + i.

At this point, we have two choices. We can write the solutions as

y1(t) = e(−1−i)t = e−t(cos t− i sin t) and y2(t) = e(−1+i)t = e−t(cos t+ i sin t) (5)

with a general solution
y(t) = c1y1(t) + c2y2(t).

or
ỹ1(t) = e−t cos t and ỹ2(t) = e−t sin t (6)

y(t) = c̃1ỹ1(t) + c̃2ỹ2(t).

We know from the exercise above that we can write the solutions in (5) as a linear combination of the
solutions in (6) and vice versa.

For y′(0) = and y′(0) = −3, then

0 = y(0) = c1 + c2

y′(t) = c1(−1− i)e(−1−i)t + c2(−1 + i)e(−1+i)t

−3 = y′(0) = c1(−1− i) + c2(−1 + i)
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So c2 = −c1,

−3 = c1(−1− i)− c1(−1 + i) = −2ic1, and c1 =
−3

−2i
= −3i

2
.

Thus,

y(t) = −3i

2
(e−t(cos t− i sin t)− e−t(cos t+ i sin t))

= −3i

2
(e−t(−2i sin t) = −3e−t sin t.

0 = y(0) = c̃1

y′(t) = c̃1e
−t(− sin t− cos t) + c̃2e

−t(cos t− sin t)

−3 = y′(0) = −c̃1 + c̃2

Thus, c̃1 = 0, c̃2 = −3, and
y(t) = −3e−t sin t.

Exercise 5. Solve
y′′ − 6y′ + 13y = 0

3 Returning to the Mass-Spring Oscillator

Returning to the mass-spring oscillator, we have the governing equation

my′′ + by′ + ky = 0

3.1 Frictionless Oscillator

For the case b = 0, we have the auxiliary mr2 + k = 0 with roots r± = ±
√
k/m = ω0. The general solution

is
y(t) = c1 cosω0t+ c2 sinω0t. (7)

To place this expression in a different form, recall the sum on sines formula

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

Now, set

• c1 = A sinφ, c2 = A cosφ
then

• A =
√
c21 + c22, φ = tan(c1/c2).

With

• θ1 = φ and θ2 = ω0t

we can rewrite (7)
y(t) = A sin(ωt+ φ)

(Tangent has period π and so the choice of φ depends on the signs of c1 and c2.) In this expresion A is called
the amplitude of the oscillator and φ is called the phase.
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3.2 Underdamped oscillatory motion

With b 6= 0 we have the roots of the auxiliary equation

r− =
−b−

√
b2 − 4mk

2m
and r− =

−b+
√
b2 − 4mk

2m
.

If 4mk > b2, then the expression in the radical is negative. We write the roots

r− =
−b
2m
− i
√
ω2
0 −

b2

4m2
and r− =

−b
2m

+ i

√
ω2
0 −

b2

4m2
. (8)

In this case, the spring is oscillating, but damped. Thus, a spring is more likely to oscillator with a higher
mass and a stiffer spring.

The damping is exponential with rate −b/2m. So the damping rate increases with higher friction or lower
mass. The frequency of oscillator ω satisfies

ω2 = ω2
0 −

b2

4m2
,

which is slower that the frictionless oscillator frequency, ω0. Now we can write the general solution as

y(t) = e−kt/m(c1 cosωt+ c2 sinωt)

As with the frictionless case, we can write

y(t) = Ae−kt/m sin(ωt+ φ). (9)

3.3 Damped motion

.
If 4mk > b2 then the roots (8) to the auxiliary equation or both real and negative.

Exercise 6. Check that both of the roots, r− and r+, are negative.

Thus,
y(t) = c1e

r−t + c2e
r+t

and the spring does not oscillate. It does not even move farther from equilibrium than its initial position.
Write

y(t) = (c1e
(r−−r+)t + c2)er+t

Because r− − r+ < 0, the long term behavior is determine by the smaller rate, r+.

3.4 Critically Damped

For the case in which 4mk = b2, then the auxiliary equation is a perfect square and, consequently, th roots
rc = −2b/m are repeated. In this case the general solution

y(t) = e−kt/m(c1 + c2t)

and the spring can move initially away from the equilibrium. It still does not oscillatre

Exercise 7. Find the maximum distance that the spring is from equilibrium. When does that take place?
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3.5 Forced Oscillations

We will examine external forces to the mass-spring oscillator through a sinusoidal force. Thus, the governing
equations

my′′ + by′ + ky = F0 cos γt

. We will analyze the forcing using the solution (9) to the homogeneous equation. Using the method of
undetermined coefficients,

yp(t) = A1 cos γt+A2 sin γt.

So,
yp(t) = A1 cos γt +A2 sin γt
y′p(t) = γA2 cos γt −γA1 sin γt
y′′p (t) = −γ2A1 cos γt +− γ2A2 sin γt

kyp(t) = kA1 cos γt +kA2 sin γt
by′p(t) = bγA2 cos γt −bγA1 sin γt
my′′p (t) = −mγ2A1 cos γt −mγ2A2 sin γt

Substituting into the governing equation, we find that

((k −mγ2)A1 + bγA2) cos γt+ (−bγA1 + (k −mγ2)A2) sin γt = F0 cos γt.

By equating the coefficients of cos γt and sin γt, we have

(k −mγ2)A1 + bγA2 = F0 and − bγA1 + (k −mγ2)A2 = 0. (10)

Exercise 8. The solutions for A1 and A2 for (10) is

A1 =
F0(k −mγ2)

(k −mγ2)2 + b2γ2
and A1 =

F0bγ

(k −mγ2)2 + b2γ2

This give us a particular solution

yp(t) =
F0

(k −mγ2)2 + b2γ2
(
(k −mγ2) cos γt+ bγ sin γt)

)
=

F0

(k −mγ2)2 + b2γ2

(√
(k −mγ2)2 + b2γ2 sin(γt+ φf )

)
=

F0√
(k −mγ2)2 + b2γ2

sin(γt+ φf )

= F0M(γ) sin(γt+ φf )

where tanφf = A1/A2 = (k −mγ2)/(bγ) and M(γ) is called the frequency response curve or response
curve.

Exercise 9. In the underdamped case, M takes on its maximum at

γr =

√
ω2
0 −

b2

4m2

with value

M(γr) =
1

b
√
ω2
0 − b2

4m2

.
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