Nonhomogeneous Equations and Variation of Parameters

June 17, 2016

1 Nonhomogeneous Equations

1.1 Review of First Order Equations

If we look at a first order homogeneous constant coefficient ordinary differential equation

$$
b y^{\prime}+c y=0
$$

then the corresponding auxiliary equation

$$
a r+c=0
$$

has a root $r_{1}=-c / a$ and we have a solution

$$
y_{h}(t)=c e^{r_{1} t}=c_{1} e^{-c t / a}
$$

If the equation is nonhomogeneous

$$
b y^{\prime}+c y=f
$$

Then, we introduce the integrating factor $e^{c t / b}$

$$
\begin{aligned}
\frac{d}{d t}\left(e^{c t / b} y\right) & =e^{c t / b} f \\
e^{c t / a} y(t) & =c_{1}+\int e^{c t / a} f(t) d t \\
y(t) & =c_{1} e^{-c t / b}+e^{-c t / b} \int e^{c t / b} f(t) d t \\
y(t) & =y_{h}(t)+y_{p}(t)
\end{aligned}
$$

The solution is a sum of

- $y_{h}(t)$, the solution to the homogeneous equation. $\left(b y_{h}^{\prime}+c y_{h}=0\right)$. It has the constant that will be determined by the initial condition.
- $y_{p}(t)$, a solution that involves f.

Then,

$$
b\left(y_{h}+y_{p}\right)^{\prime}+c\left(y_{h}+y_{p}\right)=\left(b y_{h}^{\prime}+c y_{h}\right)+\left(b y_{p}^{\prime}+c y_{p}\right)=0+f=f
$$

We next take an similar, but less formal approach to second order equations, writing,

$$
y=y_{h}+y_{p}
$$

where y_{h} is a general solution to

$$
a y_{h}^{\prime \prime}+b y_{h}^{\prime}+c y_{h}=0 .
$$

and y_{p} is a particular solution to

$$
a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}=f
$$

1.2 Examples

We gain intuition in the nature of particular solution through some illustrative exampels
Example 1. For

$$
y^{\prime \prime}+y^{\prime}+4 y=2 t
$$

we try a particular solution $y_{p}(t)=A t+B$. Then

$$
\begin{aligned}
& y_{p}(t)=A t \quad+B \\
& y_{p}^{\prime}(t)=A \\
& y_{p}^{\prime \prime}(t)=0
\end{aligned}
$$

$$
4 y_{p}(t)=4 A t+4 B
$$

$$
y_{p}^{\prime}(t)=A
$$

$$
y_{p}^{\prime \prime}(t)=0
$$

Thus,

$$
\begin{gathered}
4 A t+(A+4 B)=2 t \\
4 A=2, \quad A+4 B=0 \\
A=\frac{1}{2} \quad B=-\frac{1}{8}
\end{gathered}
$$

and

$$
y_{p}(t)=\frac{1}{3} t-\frac{1}{8}
$$

we can turn this suggestion into a strategy for the case that f is a polynomial. If the degree is m, then we will look for a particular solution

$$
y_{p}(t)=A_{m} x^{m}+\cdots+A_{1} x+A_{0}
$$

that is also a polynomial of degree m. If this case the expression

$$
a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y
$$

is also a polynomial of degree m. The undetermined coefficients $A_{0}, A_{1}, \ldots, A_{m}$ are selected so that the coefficients of $1, t, \ldots, t^{m}$ to match those of f. This gives us $m+1$ equation in m unknowns. This technique is called the bf method of undetermined coefficients.

Example 2. For the differential equation

$$
4 y^{\prime \prime}-3 y^{\prime}-y=-2 \cos t
$$

we note that the derivatives of sine will introduce the cosine. Thus, we search for a particular solution

$$
y_{p}(t)=A \cos t+B \sin t
$$

with undetermined coefficients A and B.

$$
\begin{array}{rll}
y_{p}(t) & =A \cos t & +B \sin t \\
y_{p}^{\prime}(t) & =B \cos t & -A \sin t \\
y_{p}^{\prime \prime}(t) & =-A \cos t & -B \sin t \\
-y_{p}(t) & =-A \cos t & -B \sin t \\
-3 y_{p}^{\prime}(t) & =-3 B \cos t & +3 A \sin t \\
4 y_{p}^{\prime \prime}(t) & =-4 A \cos t & -4 B \sin t
\end{array}
$$

Therefore,

$$
4 y_{p}^{\prime \prime}(t)-3 y_{p}^{\prime}(t)-y(t)=(-5 A-3 B) \cos t+(-5 B+3 A) \sin t
$$

and

$$
\begin{gathered}
-5 A+3 B=-2, \quad-5 B+3 A=0 \\
B=\frac{3}{5} A, \quad-5 A-3 \frac{3}{5} A,=\frac{-25-9}{5} A=-\frac{-34}{5} A=-2, \\
A=\frac{5}{17}, \quad B=\frac{3}{5} A=\frac{3}{5} \cdot \frac{5}{17}=\frac{3}{17}
\end{gathered}
$$

Example 3. For the differential equation

$$
3 y^{\prime \prime}-2 y^{\prime}+6 y=e^{2 t}
$$

we look for a solution of the form $y_{p}(t)=A e^{2 t}$ with undetermined coefficient A. This suffices because the derivative of $y_{p}(t)$ are all multiples of $e^{2 t}$. Then

$$
3 y^{\prime \prime}-2 y^{\prime}+6 y=12 A e^{2 t}-4 A e^{2 t}+6 A e^{2 t}=14 A e^{2 t}
$$

Thus, $A=1 / 14$ and

$$
y_{p}(t)=\frac{1}{14} e^{2 t}
$$

is a particular solution.
Example 4. For the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=e^{2 t}
$$

we have the auxiliary equation

$$
r^{2}+r-6=(r-2)(r+3)=0 .
$$

In this case, $e^{2 t}$ is a solution to the homogeneous equation. As in the case of double roots, we add a term $t e^{2 t}$ and look for a particular solution of the form

$$
\begin{aligned}
& y_{p}(t)=(A t+B) e^{2 t} \\
& \\
& y_{p}(t)= A t e^{2 t}+B e^{2 t} \\
& y_{p}^{\prime}(t)= 2 A t e^{2 t}+A e^{2 t}+2 B e^{2 t} \\
& y_{p}^{\prime \prime}(t)= 4 A t e^{2 t}+2 A e^{2 t}+2 A e^{2 t}+4 B e^{2 t}
\end{aligned}
$$

and

$$
\begin{array}{rll}
-6 y_{p}(t) & =-6 A t e^{2 t} & -6 B e^{2 t} \\
y_{p}^{\prime}(t) & =2 A t e^{2 t} & +(A+2 B) e^{2 t} \\
y_{p}^{\prime \prime}(t) & =4 A t e^{2 t} & +(4 A+4 B) e^{2 t} \\
y_{p}^{\prime \prime}(t) & +y_{p}^{\prime}(t)-6 y_{p}(t)=5 A e^{2 t}
\end{array}
$$

and $A=1 / 5$. Thus,

$$
y_{p}(t)=\frac{1}{5} t e^{2 t}
$$

The inclusion of the B term was not necessary.
In general, when we have a nonhomogeneous differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t) e^{r t}
$$

for $p(t)$ a polynomial of degree m, we take

$$
y_{p}(t)=t^{s} q(t) r^{r t}
$$

where q is a polynomial of degree m and $s=0,1,2$ is the number of times r is a solution to the auxiliary equation.

2 Variation of Parameters

Variation of parameters, also known as variation of constants, is a more general method to solve inhomogeneous linear ordinary differential equations.

For first-order inhomogeneous linear differential equations, we were able to determine a solution using an integrating factor. For second order equations, we have used a heuristic approach they may fail for many choices of f.

2.1 Review of First Order Equations

To solve for a first order equation

$$
\begin{equation*}
y^{\prime}+p(t) y=q(t) \tag{1}
\end{equation*}
$$

Recall that the general solution of the corresponding homogeneous equation

$$
y^{\prime}+p(t) y=0
$$

This homogeneous differential equation can be solved by different methods, for example separation of variables, we note that is equation is separable.

$$
\begin{aligned}
\frac{d y_{h}}{d t}+p(t) y_{h} & =0 \\
\frac{d y_{h}}{d t} & =-p(t) y_{h} \\
\frac{1}{y_{h}} \frac{d y_{h}}{d t} & =-p(t) y_{h} \\
\int \frac{1}{y_{h}} \frac{d y_{h}}{d t} d t & =-\int p(t) d t \\
\int \frac{1}{y_{h}} d y_{h} & =-\int p(t) d t \\
\ln \left|y_{h}\right| & =-\int p(t) d t+c \\
\left|y_{h}\right| & =\exp \left(-\int p(t) d t+c\right) \\
y_{h} & =A \exp \left(-\int p(t) d t\right)=A \mu(t)
\end{aligned}
$$

Now we return to solving the non-homogeneous equation (1). The method variation of parameters forms the particular solution by multiplying solution by an unknown function $v(t)$

$$
y_{p}=v(t) \mu(t)
$$

By substituting y_{p} into the non-homogeneous equation, (1) we can find v.

$$
\begin{aligned}
y_{p}^{\prime}+p y_{p} & =q \\
(v \mu)^{\prime}+p(v \mu) & =q \\
v^{\prime \prime} \mu+v \mu^{\prime}+p(v \mu) & =q \\
v^{\prime \prime} \mu+v\left(\mu^{\prime}+p \mu\right) & =q \\
v^{\prime} \mu & =q \quad \text { (Note that } \mu^{\prime}+p \mu=0 . \\
v^{\prime} & =q / \mu \\
v(t) & =\int q(t) / \mu(t) d t \\
v(t) & =\int q(t) \exp \left(\int p(t) d t\right) d t
\end{aligned}
$$

We only need a single particular solution, so we can set the constant of integration to be 0 .
Now we have the solution

$$
y(t)=y_{h}(t)+y_{p}(t) .
$$

2.2 General Procedure for Second Order Equation

Write

$$
y_{h}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

as the general solution to

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

Now, we seek a solution of

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f \tag{3}
\end{equation*}
$$

of the form

$$
\begin{equation*}
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t) \tag{4}
\end{equation*}
$$

The derivative, by the product rule, is

$$
y_{p}^{\prime}(t)=\left(v_{1}^{\prime}(t) y_{1}(t)+v_{2}^{\prime}(t) y_{2}(t)\right)+\left(v_{1}(t) y_{1}^{\prime}(t)+v_{2}(t) y_{2}^{\prime}(t)\right)
$$

In order to avoid second derivatives on v_{1} and v_{2}, we attempt a solution with

$$
\begin{equation*}
0=v_{1}^{\prime}(t) y_{1}(t)+v_{2}^{\prime}(t) y_{2}(t) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{p}^{\prime}(t)=v_{1}(t) y_{1}^{\prime}(t)+v_{2}(t) y_{2}^{\prime}(t) \tag{6}
\end{equation*}
$$

Take one more derivative.

$$
\begin{equation*}
y_{p}^{\prime \prime}(t)=v_{1}^{\prime}(t) y_{1}^{\prime}(t)+v_{1}(t) y_{1}^{\prime \prime}(t)+v_{2}^{\prime}(t) y_{2}^{\prime}(t)+v_{2}(t) y_{2}^{\prime \prime}(t) \tag{7}
\end{equation*}
$$

We now substitute this into (3) and simplify,

$$
\begin{align*}
f & =a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p} \\
f & =a\left(v_{1}^{\prime} y_{1}^{\prime}+v_{1} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{2} y_{2}^{\prime \prime}\right)+b\left(v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}\right)+c\left(v_{1} y_{1}+v_{2} y_{2}\right) \\
f & =a\left(v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}\right)+v_{1}\left(a y_{1}^{\prime}+b y_{1}^{\prime}+c\right)+v_{2}\left(a y_{2}^{\prime}+b y_{2}^{\prime}+c\right) \\
f & =a\left(v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}\right) \\
\frac{1}{a} f & =v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime} \tag{8}
\end{align*}
$$

Here, we use the fact that y_{1} and y_{2} solve the homogeneous equation (2).
Now we have two linear equations for v_{1}^{\prime} and v_{2}^{\prime}, namely, (5) and (8). We can solve for v_{2} in (5), substitute into (8), simplify and then substitute the solution of v_{1} back into (5). This results in the solutions

$$
v_{1}^{\prime}=-\frac{f y_{2}}{a\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)} \quad \text { and } \quad v_{2}^{\prime}=\frac{f y_{2}}{a\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)}
$$

Finally, we integrate,

$$
v_{1}(t)=-\int\left(\frac{f(t) y_{2}(t)}{a\left(y_{1}(t) y_{2}^{\prime}(t)-y_{1}(t)^{\prime} y_{2}(t)\right)}\right) d t \quad \text { and } \quad v_{2}(t)=-\int\left(\frac{f(t) y_{2}(t)}{a\left(y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)\right)}\right) d t
$$

and substitute into (4).
Remark 5. The expression $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is the 2×2 example of the Wronskian Written as a determinant

$$
W\left(y_{1}, y_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
y_{1} & y_{2} \\
\left.y_{1}\right] & y_{2}^{\prime}
\end{array}\right)
$$

Then

$$
v_{1}^{\prime}=-\frac{f y_{2}}{a W\left(y_{1}, y_{2}\right)} \quad \text { and } \quad v_{2}^{\prime}=\frac{f y_{2}}{a W\left(y_{1}, y_{2}\right)}
$$

2.3 Examples

Rather than using the general expression for the solution, we will follow the process to derive these equations beginning with

$$
\begin{aligned}
0 & =v_{1}^{\prime}(t) y_{1}(t)+v_{2}^{\prime}(t) y_{2}(t) \\
\frac{1}{a} f(t) & =v_{1}^{\prime}(t) y_{1}^{\prime}(t)+v_{2}(t)^{\prime} y_{2}^{\prime}(t)
\end{aligned}
$$

to determine v_{1} and v_{2} and then substitute into

$$
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

Example 6. For

$$
y^{\prime \prime}+4 y=t
$$

the auxiliary equation is

$$
r^{2}+4=0
$$

with solutions $r_{ \pm}= \pm 2 i$. This gives the solutions

$$
y_{1}(t)=\cos 2 t \quad \text { and } \quad y_{2}(t)=\sin 2 t .
$$

with derivatives

$$
y_{1}^{\prime}(t)=-2 \sin 2 t \quad \text { and } \quad y_{2}^{\prime}(t)=2 \cos 2 t .
$$

Thus,

$$
\begin{aligned}
0 & =v_{1}^{\prime}(t) \cos 2 t+v_{2}^{\prime}(t) \sin 2 t \\
t & =-2 v_{1}^{\prime}(t) \sin 2 t+2 v_{2}^{\prime}(t) \cos 2 t
\end{aligned}
$$

We solve for $v_{1}^{\prime}, v_{2}^{\prime}$, integrate,

$$
\begin{aligned}
& v_{2}(t)=-\frac{\cos 2 t}{\sin 2 t} v_{1}(t) \\
& t=-2 v_{1}^{\prime}(t) \sin 2 t-\frac{\cos 2 t}{\sin 2 t} v_{1}^{\prime}(t) \cos 2 t \\
& t \sin 2 t=-2 v_{1}^{\prime}(t) \\
& v_{1}^{\prime}(t)=-\frac{1}{2} t \sin t, \quad v_{1}(t)=\frac{1}{8}(2 t \cos 2 t-\sin 2 t) \\
& v_{2}^{\prime}(t)=\frac{\cos 2 t}{\sin 2 t} \cdot \frac{1}{2} t \sin 2 t=\frac{1}{2} t \cos 2 t \quad v_{2}(t)=\frac{1}{8}(2 t \sin 2 t+\cos 2 t)
\end{aligned}
$$

and substitute into the equation for y_{p}

$$
y_{p}(t)=\frac{1}{8}(2 t \cos 2 t-\sin 2 t) \cos 2 t+\frac{1}{8}(2 t \sin 2 t+\cos 2 t) \sin 2 t=\frac{1}{4} t .
$$

Example 7. To find a solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Note that the auxiliary equation for the homogeneous equation is

$$
r^{2}-5 r+6=(r-2)(r-3) .
$$

This gives two linearly independent solutions

$$
y_{1}(t)=e^{2 t} \quad \text { and } \quad y=e^{3 t}
$$

The Wronskian

$$
W\left(y_{1}, y_{2}\right)=e^{2 t}\left(3 e^{3 t}\right)-\left(2 e^{2 t}\right) e^{3 t}=-e^{5 t}
$$

Thus,

$$
\begin{gathered}
v_{1}^{\prime}(t)=-\frac{2 e^{t} e^{2 t}}{-e^{5 t}}=2 e^{-2 t} \quad \text { and } \quad v_{2}^{\prime}(t)=\frac{2 e^{t} e^{3 t}}{-e^{5 t}}=-2 e^{-t} . \\
v_{1}(t)=-=e^{-2 t} \quad \text { and } \quad v_{2}(t)=e^{-t}
\end{gathered}
$$

and

$$
y_{p}(t)=\left(-e^{-2 t}\right)\left(e^{3 t}\right)+\left(2 e^{-t}\right)\left(e^{2 t}\right)=e^{t} .
$$

A general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

