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For a set A, let mA = inf{g(t); t ∈ A} for a positive function g. Then

Eg(X) ≥ E[g(X)IA(X)] ≥ E[mAIA(X)] = mAP{X ∈ A}.

The Chebyshev inequality occurs by taking g to be function increasing on the support of X and
A = [x,∞), then mA = g(x),

Eg(X) ≥ g(x)P{X > x} or P{X > x} ≤ Eg(X)
g(x)

.

This can be seen graphically in Figure 1 for the case g(x) = x. The area of the rectangle xP{X > x} is
less than EX, the area above the graph of the cumulative distribution function and below the line y = 1.
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Figure 1: A geometric proof of the Chebyshev inequality xP{X > x} ≤ EX

For the case X = |Y − µY | and g(x) = x2, we have

P{|Y − µY | > y} ≤ E(Y − µy)2

y2
=

Var(Y )
y2

.
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Example 1. For a standard normal random variable,

P{Z > z} ≤ Var(Z)
z2

=
1
z2
.

Thus, P{Z > 6} ≤ 1/36.

Can we improve on this estimate?
If we choose g(x) = exp(tx), t > 0, then for random variables possessing a moment generating function,

the Chebyshev inequality becomes

P{X > x} ≤ MX(t)
exp(tx)

, logP{X > x} ≤ logMT (t)− tx.

Next, we minimize this inequality over all possible choices of t.

logP{X > x} ≤ −K∗(x), inf
t>0
{KT (t)− tx} = − sup

t>0
{tx−KT (t)} = −K∗(x).

where KX(t) = logMT (x), the cumulant generating function.
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Figure 2: Geometric construction of K∗X , the rate function

We next show that KX(t) is a convex function. This will mean that tx−KT (t) is concave down and so
the maximum of tx−KT (t) is unique. This starts with the following.
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Exercise 2. Let n : R → [0,∞) be a non-negative function with EPn(X) > 0. (Here, we emphasize the
probability used in the expectation with the subscript P .) Define, for each event A,

Q(A) =
EP [IAn(X)]
EPn(X)

.

The Q is also a probability.

If we take two derivatives and let n(x) = exp tx, t ≥ 0, then

K ′′X(t) =
M ′′(t)−M ′X(t)2

MX(t)2
=
EP [X2etX ]
EP etX

−
(
EP [XetX ]
EP etX

)2

= EQX
2 − (EQX)2 = VarQ(X) > 0.

K∗X(x) is called the (convex) conjugate function or the Legendre transform for KX or the rate
function. This inequality gives an upper bound for the probability of rare events.

To find the unique maximum of tx−KX(t), we take a derivative with respect to t and set the expression
equal to 0 to obtain

K ′X(t) = x. (1)

Let t∗(x) denote the solution to Equation (1). Then,

K∗X(x) = t∗(x)x−KX(t∗(x)).

Example 3. For the standard normal, the cumulant generating function, KZ(t) = t2/2

K ′Z(t) = t, t∗(x) = x, K∗(x) = x2 − x2

2
=
x2

2
.

Thus, for x > 0,

P{Z > x} ≤ exp
(
−x

2

2

)
.

The 6σ strategy looks to eliminate errors more common that 6 standard deviations from the mean. For a
normal random variables, the rate function tells us that this probability is at most

2 exp(−62

2
) ≈ 3× 10−8.

The actual answer is approximately 10−9

Example 4. For a Poisson random variable, MX(t) = ρX(et) = expλ(et − 1) and KX(t) = λ(et − 1).

K ′X(t) = λet, t∗(x) = log
x

λ
, K∗(x) = x log

x

λ
− x+ λ.

Thus, for x > 0,

P{X > x} ≤ exp−K∗(x) =
(
λ

x

)x
ex−λ.

Exercise 5. For a binomial random variable Mx(t) = ρX(et) = ((1−p) +pet)n. Find the rate function K∗.
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