Probability Inequalities

October, 2009

For a set A, let $m_A = \inf\{g(t); t \in A\}$ for a positive function g. Then

$$Eg(X) \ge E[g(X)I_A(X)] \ge E[m_AI_A(X)] = m_AP\{X \in A\}.$$

The **Chebyshev inequality** occurs by taking g to be function increasing on the support of X and $A = [x, \infty)$, then $m_A = g(x)$,

$$Eg(X) \ge g(x)P\{X > x\}$$
 or $P\{X > x\} \le \frac{Eg(X)}{g(x)}$.

This can be seen graphically in Figure 1 for the case g(x) = x. The area of the rectangle $xP\{X > x\}$ is less than EX, the area above the graph of the cumulative distribution function and below the line y = 1.

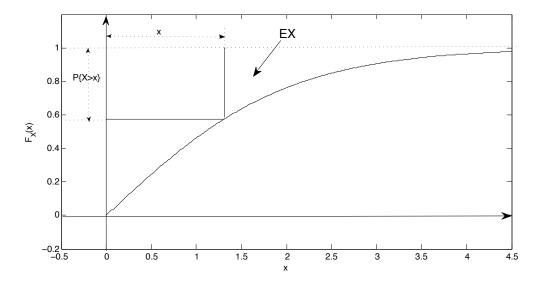


Figure 1: A geometric proof of the Chebyshev inequality $xP\{X>x\} \leq EX$

For the case $X = |Y - \mu_Y|$ and $g(x) = x^2$, we have

$$P\{|Y - \mu_Y| > y\} \le \frac{E(Y - \mu_y)^2}{y^2} = \frac{\text{Var}(Y)}{y^2}.$$

Example 1. For a standard normal random variable,

$$P\{Z>z\} \leq \frac{\mathit{Var}(Z)}{z^2} = \frac{1}{z^2}.$$

Thus, $P\{Z > 6\} \le 1/36$.

Can we improve on this estimate?

If we choose $g(x) = \exp(tx)$, t > 0, then for random variables possessing a moment generating function, the Chebyshev inequality becomes

$$P\{X > x\} \le \frac{M_X(t)}{\exp(tx)}, \quad \log P\{X > x\} \le \log M_T(t) - tx.$$

Next, we minimize this inequality over all possible choices of t.

$$\log P\{X > x\} \le -K^*(x), \quad \inf_{t > 0} \{K_T(t) - tx\} = -\sup_{t > 0} \{tx - K_T(t)\} = -K^*(x).$$

where $K_X(t) = \log M_T(x)$, the cumulant generating function.

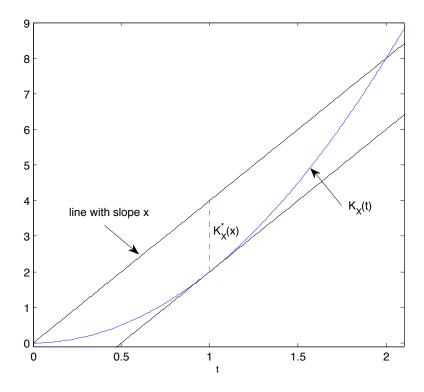


Figure 2: Geometric construction of K_X^* , the rate function

We next show that $K_X(t)$ is a convex function. This will mean that $tx - K_T(t)$ is concave down and so the maximum of $tx - K_T(t)$ is unique. This starts with the following.

Exercise 2. Let $n : \mathbf{R} \to [0, \infty)$ be a non-negative function with $E_P n(X) > 0$. (Here, we emphasize the probability used in the expectation with the subscript P.) Define, for each event A,

$$Q(A) = \frac{E_P[I_A n(X)]}{E_P n(X)}.$$

The Q is also a probability.

If we take two derivatives and let $n(x) = \exp tx$, $t \ge 0$, then

$$K_X''(t) = \frac{M''(t) - M_X'(t)^2}{M_X(t)^2} = \frac{E_P[X^2 e^{tX}]}{E_P e^{tX}} - \left(\frac{E_P[X e^{tX}]}{E_P e^{tX}}\right)^2 = E_Q X^2 - (E_Q X)^2 = \operatorname{Var}_Q(X) > 0.$$

 $K_X^*(x)$ is called the (convex) conjugate function or the Legendre transform for K_X or the rate function. This inequality gives an upper bound for the probability of rare events.

To find the unique maximum of $tx - K_X(t)$, we take a derivative with respect to t and set the expression equal to 0 to obtain

$$K_X'(t) = x. (1)$$

Let $t^*(x)$ denote the solution to Equation (1). Then,

$$K_X^*(x) = t^*(x)x - K_X(t^*(x)).$$

Example 3. For the standard normal, the cumulant generating function, $K_Z(t) = t^2/2$

$$K_Z'(t) = t$$
, $t^*(x) = x$, $K^*(x) = x^2 - \frac{x^2}{2} = \frac{x^2}{2}$.

Thus, for x > 0,

$$P\{Z>x\} \le \exp\left(-\frac{x^2}{2}\right).$$

The 6σ strategy looks to eliminate errors more common that 6 standard deviations from the mean. For a normal random variables, the rate function tells us that this probability is at most

$$2\exp(-\frac{6^2}{2}) \approx 3 \times 10^{-8}.$$

The actual answer is approximately 10^{-9}

Example 4. For a Poisson random variable, $M_X(t) = \rho_X(e^t) = \exp \lambda(e^t - 1)$ and $K_X(t) = \lambda(e^t - 1)$.

$$K_X'(t) = \lambda e^t, \quad t^*(x) = \log \frac{x}{\lambda}, \quad K^*(x) = x \log \frac{x}{\lambda} - x + \lambda.$$

Thus, for x > 0,

$$P\{X > x\} \le \exp{-K^*(x)} = \left(\frac{\lambda}{x}\right)^x e^{x-\lambda}.$$

Exercise 5. For a binomial random variable $M_x(t) = \rho_X(e^t) = ((1-p) + pe^t)^n$. Find the rate function K^* .