
Introduction to the Phase Plane

June 22, 2016

1 The Phase Line

A single first order differential equation of the form

dy

dt
= f(y) (1)

makes no mention of t in the function f .
Such a differential equation is called autonomous, that is time independent variable t does not appear

explicitly. When the independent variable is time, then the system is also known as time invariant. This
is the content of the next exercise.

Exercise 1. If y(t)) is a solution of (2), and t0 is a real number, then so is y(t0 + t).

We analyze the qualitative properties of (??) using the phase line through an example.

Example 2. Consider the autonomous differential equation

dy

dt
= −A(y − y1)(y − y2)(y − y3)2.

with y1 < y2 < y3. We can give the qualitative behavior using the phase line. This is a line with arrow in
the plane pointing to the right at y if f(y) is positive and to the left if f(y) is negative. Thus.
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yFigure 1: Plot of −A(y − y1)(y − y2)(y − y3)2., A = 2, y1 = 1, y2 = 2, y3 = 3
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• Solutions y(t) move the direction of the arrows as time increases.

• A point y0 are called an equilibrium of critical point if f(y0) = 0. This give the trivial solution

y(t) = y0 for all t.

Example 3. Describe the equilibrium points of

dy

dx
= sin t.

For the equilibrium points

• If both arrows point toward the critical point, it is called stable or a sink. Nearby solutions will
converge to the equilibrium point. The solution is stable under small perturbations, meaning that if the
solution is disturbed, it will return. y2 is a stable point.

• If both arrows point away from the critical point, it is called unstable or source. Nearby solutions
will diverge from the equilibrium point, The solution is unstable under small perturbations, meaning
that if the solution is disturbed, it will not return. y1 is an unstable point.

• If one arrow points towards the equilibrium point, and one points away, it is semi-stable or a node: It
is stable in one direction (where the arrow points towards the point), and unstable in the other direction
(where the arrow points away from the point). y2 is a node.

More generally, if f has a derivative.

• f ′(y) < 0 at stable equilibria,

• f ′(y) > 0 at unstable equilibria.

• f ′(y) = 0 at nodes.

2 Representation as a System of First Order Equations

For the second order linear ordinary differential equation.

y′′ + by′ + cy = f.

We can write this as system of two first order equations

y′ = v and v′ = (bv + cy)/a.

In the case of mass-spring oscillator, v is the velocity. In the case of a circuit in series, we typically write
the equation in terms of the charge q,

aq′′ + bq′ + cq = E,

we can write this as the system
q′ = I and I ′ = (bI + cq)/a.

In this case I is the current.
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3 The Phase Plane Equation

Now we will look at a system of two first order linear ordinary differential equations.

dx

dt
= f(x, y) and

dy

dt
= g(x, y) (2)

This system is also called autonomous and time invariant. As above, we have the property.

Exercise 4. If (x(t), y(t)) is a solution of (2), and t0 is a real number, then so is (x(t0 + t), y(t0 + t)).

By the chain rule
dy

dt
=
dy

dx
· dx
dt

or
dy

dx
=
dy/dt

dx/dt
.

For time invariant systems in (2), this allows us to consider the phase plane equation,

dy

dx
=
g(x, y)

f(x, y)
(3)

Let us review what the phase plane equation tells us and what it does not tell us.

• A plot of (x(t), y(t)) is a solution of (2) is a curve in the plane, known as a trajectory.

• If (x(t), y(t)) is a solution of (2), then the derivatives of the solution are vectors

(dx/dt, dy/dt) = (f(x, y), g(x, y))

with

– slope dy/dx = g(x, y)/f(x, y) and

– magnitude (or speed) √
(dx/dt)2 + (dy/dt)2 =

√
f(x, y)2 + g(x, y)2

• The trajectory itself does not tell us when the solution arrives at a position (x, y) in the plane, not
does it tell us the speed. Indeed, if we were t0 multliply both f and g by a constant α 6= 0, it would
not change the trajectory. It would change the speed and it would change the direction of the solution
curve is α < 0.

• It does tell us the slope dy/dx which is the tangent line to the trajectory at a position (x, y).

• The solutions to (3) give us these trajectories.

• However, for (2), t is the independent variable. x and y are dependent variables.

• The direction fields give us solutions to differential equations with x the independent variable and y
dependent. So, even though these plots look very similar, they reveal different information.
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Example 5. An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric
circuit consisting of an inductor, having inductance L, and a capacitor, having capacitance C, the governing
equations for the chage q are

L
d2q

dt2
+

1

C
q = 0.

If we have the inttial value problem, q(0) = 0, q′(0) = I0, then the solution is

q(t) =
I0
ω0

sinω0t

where ω2
0 = 1/LC. The current,

I(t) =
dq

dt
(t) = I0 cosω0t.

Thus the trajectory

(q(t), I(t)) = I0(
1

ω0
sinω0t, cosω0t).

is an ellipse.
ω2
0q

2 + I2 = I0.

In addition,
dI

dt
(t) =

d2q

dt2
(t) = −I0ω0 sinω0t.

In the qIplane the solution (q(t), I(t)) has slope

dI

dq
=
dI/dt

dq/dt
=
−I0ω0 sinω0t

I0 cosω0t.
= −ω0 tanω0t.

If now, we look at this same equation at a first order system, we have that

dq

dt
= I, and

dI

dt
= − 1

LC
q

Thus,
dI

dq
=
dI/dt

dq/dt
= −q/LC

I
= −ω

2
0q

I

From the solution to the differential equation, we have

− I

ω2
0q

= − I0 sinω0t

ω0I0 cosω0t
= − 1

ω0
cotω0t

as before.
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If we focus on a solution to

dI

dq
= −ω

2
0q

I

I
dI

dq
= −ω2

0q∫
I
dI

dq
dq = −

∫
ω2
0qdq

1

2
I2 = −1

2
ω2
0q

2 + c

ω2
0q

2 + I2 = 2c

If the trajectory has the point (0, I0), then 2c = I20 , the ellipse we saw before. The difference is that we
do not have the time course for the trace of the differential equation along the ellipse.

4 Equilibrium Points

As in the of one equation, a point x0, y0 satisfying

f(x0, y0) = 0 and g(x0, y0) = 0

called a critical point, or equilibrium point, of the autonomous system (2)
The corresponding constant solution (x(t), y(t)) = (x0, y0) is called an equilibrium solution. The set

of all critical points is called the critical point set.

Example 6. For
dx

dt
= −x, and

dy

dt
= −2y

The direction field
dy

dx
=

2y

x

Gives vectors with positive slope in quadrants I and III and negative slope in quadrants I and IV. So the
vector etiher aim toward the equilibrium point (0, 0) or away. Since both x and y are decreasing with time
in quadrant I, we can add arrows that point to the origin and the origin is stable.

To solve the phase plane equation

1

2y

dy

dx
=

1

x∫
1

2y

dy

dx
dx =

∫
1xdx∫

1

2y
dy =

∫
1xdx

1

2
ln |y| = ln |x|+ c

y = cx2
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For
dx

dt
= x, and

dy

dt
= 2y

We have the same equilibrium point and the same phase plane equation, but the origins is unstable and the
arrows point autward

Exercise 7. Give the equilibrium points and use software to describe them for the following pairs of differ-
ential equations (See http://comp.uark.edu/∼aeb019/pplane.html.)

1.
dx

dt
= y − x

and
dy

dt
= sinx

2.
dx

dt
= x+ y and

dy

dt
= 1− x2

3.
dx

dt
= y and

dy

dt
= x− x3

We can now develop a general procedure:

If (x0, y0) is an equilibrium point.

• Create a linearize equation about this point, setting (x̃, ỹ) = (x− x0, y − y0)

dx̃

dt
= x̃

∂f

∂x
(x0, y0) + ỹ

∂f

∂y
(x0, y0) and

dy

dt
= x̃

∂g

∂x
(x0, y0) + ỹ

∂g

∂y
(x0, y0)

• Create a single second order linear constant coefficient ordinary differential equation.

• Find the roots r− and r+ of the associated auxiliary equation.

• The type of equilibrium point is determined by the following table

r− and r+ type of equilibrium point
real and both negative stable
real and both positive unstable

real, one positive and one negative saddle node
purely imaginary oscillatory

complex, negative real part stable spiral
complex, positive real part unstable spiral
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