Likelihood Ratio Tests

April 3, 2008

The likelihood ratio test is a popular choice a composite hypothesis.

\[H_0 : \theta \in \Theta_0 \] versus \[H_1 : \theta \in \Theta_1 \]

when \(\Theta \) is a multidimensional parameter space and \(\Theta_0 \) is a subspace.

\[\Lambda(x) = \frac{\sup \{ L(\theta|x) ; \theta \in \Theta_0 \}}{\sup \{ L(\theta|x) ; \theta \in \Theta \}} \]

The rejection region for an \(\alpha \)-level test is \(\{ \Lambda(x) \leq \lambda_0 \} \) where \(\lambda_0 \) is chosen so that

\[P_\theta \{ \Lambda(X) \leq \lambda_0 \} \leq \alpha \]

for all \(\theta \in \Theta_0 \).

Let \(\hat{\theta}_0 \) be the parameter value that maximizes the likelihood for \(\theta_0 \in \Theta_0 \) and \(\hat{\theta} \) be the parameter value that maximizes the likelihood for \(\theta_0 \in \Theta \). Then,

\[\Lambda(x) = \frac{L(\hat{\theta}_0|x)}{L(\hat{\theta}|x)}. \]

Example 1. Let \(\Theta = \mathbb{R} \) and consider the two-sided hypothesis

\[H_0 : \mu = \mu_0 \] versus \[H_1 : \mu \neq \mu_0. \]

Here the data are \(n \) independent \(N(\mu, \sigma^2) \) random variables \(X_1, \ldots, X_n \) with known variance \(\sigma^2 \). Then, \(\hat{\mu}_0 = \mu_0 \) and \(\bar{\mu} = \bar{x} \). Consequently,

\[L(\hat{\mu}_0|x) = \left(\frac{1}{2\pi\sigma^2} \right)^n \exp - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_0)^2, \quad L(\hat{\mu}|x) = \left(\frac{1}{2\pi\sigma^2} \right)^n \exp - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

and

\[\Lambda(x) = \exp - \frac{1}{2\sigma^2} \left(\sum_{i=1}^{n} ((x_i - \mu_0)^2 - (x_i - \bar{x})^2) \right) = \exp - \frac{n}{2\sigma^2} (\bar{x} - \mu_0)^2. \]

Now notice that

\[-2 \ln \Lambda(x) = \frac{n}{\sigma^2} (\bar{x} - \mu_0)^2 = \left(\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \right)^2. \]

Because \((\bar{X} - \mu_0)/(\sigma/\sqrt{n}) \) is a standard normal random variable, \(-2 \ln \Lambda(X) \) is the square of a standard normal, hence, a \(\chi^2 \)-square random variable with 1 degree of freedom.
1 Chi-square test

This exact computation for normal data yields, owing to the central limit theorem, an asymptotic result that is contained in the following theorem.

Theorem 2. Whenever the maximum likelihood estimate has an asymptotically normal distribution, let $\Lambda_n(x)$ be the likelihood ratio criterion for $H_0: \theta_1 = c_1$ for all $i = 1, \ldots, k$ versus $H_1: \theta_1 \neq c_1$ for some $i = 1, \ldots, n$

Then under H_0,

$$-2 \ln \Lambda_n(X)$$

converges in distribution to a χ^2_k random variable.

Example 3. Let $X_1 \ldots X_n$ be independent $\text{Pois}(\lambda)$ random variables and consider the test

$$H_0: \lambda = \lambda_0 \quad \text{versus} \quad H_1: \lambda \neq \lambda_0.$$

Then the likelihood

$$L_n(\theta|x) = \frac{\lambda^{x_1}}{x_1!} e^{-\lambda} \cdots \frac{\lambda^{x_n}}{x_n!} e^{-\lambda} = \frac{1}{x_1! \cdots x_n!} \lambda^{x_1+\cdots+x_n} e^{-n\lambda}$$

The maximum likelihood is taken for $\lambda = \bar{x}$. Thus,

$$\Lambda(x) = \frac{\lambda_0^{x_1+\cdots+x_n} e^{-n\lambda_0}}{\bar{x}^{x_1+\cdots+x_n} e^{-n\bar{x}}} = \frac{\bar{x}^{n\bar{x}} e^{-n\bar{x}}}{\lambda_0^{n\lambda_0} e^{-n\lambda_0}}$$

and

$$-2 \ln \Lambda_n(X) = -2n(\bar{x} \ln \lambda_0 - \lambda_0 - \bar{x} \ln \bar{x} + \bar{x}).$$

To determine the critical values for this test, we have

```r
> qchisq(c(0.90,0.95,0.98,0.99),1)
[1] 2.705543 3.841459 5.411894 6.634897
```

We compare $-2 \ln \Lambda_n(X)$ to the χ^2_1 distribution with $n = 36$ and $\lambda = 3$ using 1000 simulations under the null hypothesis $\lambda = 3$.

```r
> neg2lnlambda <-rep(0,1000)
> n=36
> lambda=3
> for(i in 1:1000){x<-rpois(n,3);
 neg2lnlambda[i] =-2*n*(mean(x)*log(lambda)-lambda-mean(x)*log(mean(x))+mean(x))}
> hist(neg2lnlambda,probability=TRUE)

and

> curve(dchisq(x,1),0,12)
```
Histogram of neg2lnlambda

Density

0 2 4 6 8 10 12
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x
dchisq(x, 1)