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1 Examples from Biology

1.1 Population Models

The simplest model, introduced by Thomas Malthus, are for populations unconstrained in their growth witth
this growth is proportional to its size. The parameter α is an intrinsic growth rate.

dp

dt
= αp

with solution
p(t) = p0e

αt

In his 1798 boook, An Essay on the Principle of Population, Malthus wrote

That the increase of population is necessarily limited by the means of subsistence,
That population does invariably increase when the means of subsistence increase,
and,
That the superior power of population is repressed, and the actual population kept equal to the
means of subsistence, by misery and vice.

If the population is subject to a constraint in size, say its maximum size is M , then we have a model

dp

dt
= αp

(
1− p

M

)
(1)

The parameter M is called the carrying capacity.

Exercise 1. Give a phase line analysis of the equilibrium points of (1).

Separation of variables give a solution

ln

(
p

M − p

)
= αt+ c

p

M − p
= Aeαt

p =
MAeαt

1 +Aeαt

p =
MA

Ae−αt + 1
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If the death rate is proportional to the population size, then the model becomes with death rate γ < α,

dp

dt
= αp

(
1− p

M

)
− γp

= p
(
α− αp

M
− γ
)

= p
(
α− γ − αp

M

)
= (α− γ)p

(
1− αp

(α− γ)M

)

This the model has the same structure with lower intrinsic growth rate k − γ and reduced carrying
capacity (k − γ)M/k

Next we consider a two species model.
The Lotka-Volterra equations, also known as the predator-prey equations, is frequently used to

describe the dynamics of biological systems in which two species interact, one as a predator and the other
as prey. The populations change through time according to the pair of equations:

dx

dt
= αx− βxy and

dy

dt
= δxy − γy (2)

where

• x is the number of prey (for example, rabbits)

• y is the number of some predator (for example, foxes); and

• α, β, γ, and δ are positive real parameters describing the interaction of the two species.

Thus,

• The prey are assumed to have an unlimited food supply, and to be increasing at growth rate α

• The prey is subject to predation at a rate that is proportional its population size and to the population
size of the predator. The constant of proportionality is β

• The predator population increases at a rate proportional to the amount of resources consumes. This,
too, is proportional its population size and to the population size of the prey. The constant of propor-
tionality is δ

• The predator death rate is γ

The critical point with x0 > 0 and y0 > 0.

(x0, y0) =

(
γ

δ
,
α

β

)
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The phase plane equation has an implicit solution, found using separation of variables.

dy

dx
=
dy/dt

dx/dt
=

δxy − γy
αx− βxy

=
y(δx− γ)

x(α− βy)

α− βy
y

dy

dx
=

δx− γ
x∫

α− βy
y

dy

dx
dx =

∫
δx− γ
x

dx∫
α− βy
y

dy =

∫
δx− γ
x

dx

(α ln y − βy) = (−γ lnx+ δx) + c

1.2 Epidemic Models

The SIR model divides a population into three groups from a population of size N

• S is the number susceptible,

• I this number infectious, and

• R is the number recovered (immune or removed).

This is a good and simple model for many infectious diseases including measles, mumps and rubella. If
the dynamics of an epidemic, for example the flu, are often much faster than the dynamics of human birth
, then, birth is often omitted.

The differential equation model

dS

dt
= −βIS

N
dI

dt
=

βIS

N
− γI

dR

dt
= γI

• Susceptible individuals become infected at a rate proportional to the number of encounters with infected
individuals, i. e., proportional to both the susceptible population size and the infected population size.
The constant of proportionality is β

• Infected individuals become recovered at rate proportional to the infected population. These individuals
become recovered (or immune or removed). The constant of proportionality is γ

• Because
dS

dt
+
dI

dt
+
dR

dt
= 0.

the sum
S(t) + I(t) +R(t)

is constant. The value of this constant is N .
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Thus, the model does not require the final differential equation. R(t) = N − S(t) − I(t). This is a version
of the Lotka-Volterra equation with S = x, I = y, α = 0, and δ = β in (2).

The phase plane equation,

dI

dS
=
dI/dt

dS/dt
=
βIS/N − γI
−βIS/N

= −1 +
γN

βS

which has solution

I = −S +
γN

β
lnS + c.

2 Coupled Mass-Spring Systems

On a smooth horizontal surface, a mass m1 = 2 kg is attached to a fixed wall by a spring with spring constant
k1 = 4 N/m. Another mass m2 = 1 kg is attached to the first object by a spring with spring constant k2 = 2
N/m. The objects are aligned horizontally so that the springs are their natural lengths Both objects are
displaced 3 m to the right of their equilibrium positions and then released.

So the frequencies of the springs when they are not coupled are

ω1 =

√
k1
m1

=

√
4

2
=
√

2 and ω2 =

√
k2
m2

=

√
2

1
=
√

2.

Using Hooke’s law we have two forces on the inner mass

F1 = −k1x and F2 = k2(y − x)

and one force on the outer mass
F3 = −k2(y − x).

By Newton’s second law

m1
d2x

dt2
= F1 + F2 = −k1x+ k2(y − x)

m2
d2y

dt2
= F3 = −k2(y − x)

or, rearranging

m1
d2x

dt2
+ (k1 + k2)x− k2y = 0

m2
d2y

dt2
+ k2y − k2x = 0

We analyze a specific example with m1 = 2, m2 = 1, k1 = 4,and k2 = 2. Then

2
d2x

dt2
+ 6x− 2y = 0

d2y

dt2
+ 2y − 2x = 0
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The goal it to find a single equation in the one of the variables. Choosing x, we take two derivatives and
eliminate the d2u/dtr term. This introduces a term in y we can remove using the first equation above.

2d
4x
dt4 +6d

2x
dt2 −2d

2y
dt2 = 0

+2d
2y
dt2 −4x +4y = 0

+4d
2x
dt2 +12x −4y = 0

2d
4x
dt4 +10d

2x
dt2 +8x = 0

Thus, we look to solve a fourth order, linear, constant coefficient ordinary differential equation. If we
substitute ert into this equation, we have the auxiliary equation that is a polynomial of degree 4.

2r4 + 10r2 + 8 = 2(r4 + 5r2 + 4) = 2(r2 + 1)(r2 + 4) = 0.

The roots are ±i,±2i, yielding 4 linearly independent solutions

x1(t) = cos t , x2(t) = sin t, , x3(t) = cos 2t, x4(t) = sin 2t

and the general solution
x(t) = a1 cos t+ a2 sin t+ a3 cos 2t+ a4 sin 2.t

We return to the governing equations to see that

y(t) =
d2x

dt2
+ 3x = −(a1 cos t+ a2 sin t+ 4a3 cos 2t+ 4a4 sin 2t) + 3(a1 cos t+ a2 sin t+ a3 cos 2t+ a4 sin 2t)

= 2a1 cos t+ 2a2 sin t− a3 cos 2t− a4 sin 2t

To match the initial conditions,

x(0) = 3,
dx

dt
= 0, y(0) = 3,

dy

dt
= 0.

we substitute into the equations for x and y.

3 = x(0) = a1 + a3, 3 = y(0) = 2a1 − a3 Thus, a1 = 2, a3 = 1.

to determine a2 and a4, we take derivatives,

dx

dt
(t) = −a1 sin t+ a2 cos t− 2a3 sin 2t+ 2a4 cos 2t

dy

dt
(t) = −2a1 sin t+ 2a2 cos t+ 2a3 sin 2t− 2a4 cos 2t

0 =
dx

dt
(0) = a2 + 2a4 0 =

dy

dt
(0) = 2a2 − 2a4. Thus, a2 = 0, a4 = 0.

and

x(t) = 2 cos t+ 2 cos 2t, y(t) = 4 cos t− cos 2t

Plot of the motion of the two springs is shown. Here is the R code

> t<-seq(0,8*pi,0.01)

> plot(t,2*cos(t)-2*cos(2*t)+3,type="l",ylim=c(-5,6),col="red",xlab="",ylab="")

> par(new=TRUE)

> plot(t,4*cos(t)-cos(2*t),type="l",ylim=c(-5,6),col="blue",xlab="",ylab="")
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Figure 1: Plot of the movement of coupled springs, the displacement of the inner spring x is in red and of
the outer spring y is in blue.
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