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Conditional Probability
For a probability P and an event c with P(C ) > 0, define
the conditional probability

P(A|C ) =
P(A ∩ C )

P(C )
.

The defining formula for conditional probability can be
rewritten to obtain the multiplication principle

P(A ∩ C ) = P(A|C )P(C ).

Using the multiplication formula twice

P(A ∩ C ) =


P(A|C )P(C )

P(C |A)P(A)

P(C |A)P(A) = P(A|C )P(C ) or P(C |A) =
P(A|C )P(C )

P(A)
.
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Law of Total Probability

A partition of the sample space Ω is a finite collection of
pairwise disjoint events {C1,C2, . . . ,Cn} whose union is Ω.
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Thus, every point belongs to exactly one of the Ci . In
particular, distinct members of the partition are mutually
exclusive. (Ci ∩ Cj = ∅, if i 6= j .)
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Theorem (Law of total probability)

Let P be a probability on Ω. and let {C1,C2, . . . ,Cn} be a
partition of Ω chosen so that P(Ci ) > 0 for all i . Then, for
any event A ⊂ Ω

P(A) =
n∑

i=1

P(A|Ci )P(Ci ).

Theorem (Bayes formula)

Let P be a probability on S. and let {C1,C2, . . . ,Cn} be a
partition of Ω chosen so that P(Ci ) > 0 for all i . Then, for
any event A ⊂ Ω and any j

P(Cj |A) =
P(A|Cj)P(Cj)∑n
i=1 P(A|Ci )P(Ci )

.
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Bayesian Statistics

We begin with a parameter space Ψ. Our goal is to use data
to estimate parameter values.

The Bayesian approach to statistics takes into account
external information to determine a prior density π for the
value of the parameter θ. Thus, in this approach, both the
parameter and the data are random.

Estimation and hypothesis testing are based on Bayes
formula.
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Bayesian Statistics

Let Θ̃ be a random variable having the given prior density π.
In the case where both Θ̃ and the data take on only a finite
set of values, then Bayes formula is

fΘ|X (θ|x) = P{Θ̃ = θ|X = x}

=
P{X = x|Θ̃ = θ}P{Θ̃ = θ}∑
ψ P{X = x|Θ̃ = ψ}P{Θ̃ = ψ}

=
fX |Θ(x|θ)π{θ}∑
ψ fX |Θ(x|θ)π{ψ}

Given data x, the function of θ, fΘ|X (θ|x) is called the
posterior density.
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For a continuous distribution on the parameter space, π is
now a density function and the sums in Bayes formula
become integrals.

fΘ|X (θ|x) =
fX |Θ(x|θ)π(θ)∫

fX |Θ(x|ψ)π(ψ) dψ

Example

Suppose that the prior density is a normal random variable
with mean θ0 and variance 1/λ. Data X are independent
normal random variables with unknown mean θ, variance 1.

The posterior density is also normally distributed, mean

θ1(x) =
λ

λ+ n
θ0 +

n

λ+ n
x̄ .

and variance 1/(λ+ n).
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Bayesian Statistics

We often call fX |Θ(x|θ) = L(θ|x)
the likelihood function and

log L(θ|x)

the score function. In this way we write

fΘ|X (θ|x) ∝ L(θ|x)π(θ).

The posterior distribution is proportional to the product of
the likelihood function and the prior distribution.
The constant of proportionality

ζ(x) =

∫
fX |Θ(x|ψ)π(ψ) dψ

can be difficult to evaluate.
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Markov Chains

Definition
A process X is called a Markov chain with values in a state
space S if

P{Xn+m ∈ A|X1,X2, . . .Xn} = P{Xn+m ∈ A|Xn}
= φ(m, n,Xn,A)

for all m, n ≥ 0 and sets A.

In words, given the entire history of the process up to time
n, the only part that is useful in predicting the future is Xn,
the position of the process at time n.

If φ does not depend on n, we call X time homogenuous.
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Markov Chains - Transition Probabilities

Let the state space S be countable, then we can define the
transition probabilities

T (x , y) = P{Xn+1 = y |Xn = x}.

Then the probability of any event can be determined using
T and the initial distribution

α(A) = P{X0 ∈ A}.

For example, the n time step transition

P{Xn = y |X0 = x} = T n(x , y).
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Markov Chains - Classification of States

Definition
A state y is accessible from a state x (written x → y) if for
some n ≥ 0, T n(x , y) > 0. If x → y and y → x , then we
write x ↔ y and say that x and y communicate.

↔ is an equivalence relation. Thus communication partitions
the state space by its equivalence classes.

1. Call a set of states C closed if for all x ∈ C and all
n ≥ 0, Px{Xn ∈ C} = 1.

2. A Markov chain is called irreducible if all states
communicate.

12 / 34



Markov Chain
Monte Carlo in

Bayesian
Statistics,

Phylogenetic
Reconstruction

and Protein
Structure
Prediction

Biomath Seminar

The Bayesian
Paradigm

Conditional Probablity

Bayes Formula

Markov Chains

Transition
Probabilities

Stationary Measures

Reversibility

Ergodic Theorem

Monte Carlo

Simple Monte Carlo

Markov Chain Monte
Carlo

Metropolis Hastings
Algorithm

Gibbs Sampling

Applications

Bayesian Posteriors

Phylogenetic
Reconstruction

Protein Structure
Prediction -
ROSETTA

Markov Chains - Classification of States

Set τy = min{n > 0 : Xn = y}. The state y is

1. recurrent if Py{τy <∞} = 1,

2. transient if Py{τy =∞} > 0,

3. positive recurrent if y is recurrent and Eyτy <∞,

The period of a state y , `(y) if τy is distributed on the
lattice L`(y) given X0 = y . The state y is

4. periodic if `(y) > 2,

5. aperiodic if `(y) = 1,

6. ergodic if it is positive recurrent and aperiodic.

Theorem
Communicating states have the same period.
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Markov Chains - Recurrence and Stationary
Measures

Definition
A measure σ for a transition probability T is called
stationary if

σ{y} =
∑
x∈S

σ{x}T (x , y),

or in matrix form σ = σT . Note that we are not requiring
that σ be a probability measure.

To explain the term stationary measure, note that if σ is a
probability measure and is the initial distribution, then the
identity above becomes

Pσ{X0 ∈ A} = Pσ{X1 ∈ A} = · · · = P{Xn ∈ A}.

Call a Markov chain stationary if Xn has the same
distribution for all n
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Markov Chains - Reversibility
For a stationary Markov chain, Bayes’ formula allows us to
look at the process in reverse time.

T−(x , y) = Pσ{Xn = y |Xn+1 = x}

=
Pσ{Xn+1 = x |Xn = y}Pσ{Xn = y}

Pσ{Xn+1 = x}

=
σ{y}
σ{x}

T (y , x).

Definition
The Markov chain X− in reverse time is called the dual
Markov process. If T = T−, then the Markov chain is called
reversible and the stationary distribution satisfies detailed
balance

σ{y}T (y , x) = σ{x}T (x , y). (1)

Sum this equation over y to see that it is a stronger
condition than stationarity.
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Markov Chains - Ergodic Theorem

Theorem
If T is the transition matrix for an ergodic Markov chain
with stationary distribution σ, then

lim
n→∞

T n(x , y) =
1

Eyτy
= σ{y}.

Theorem
(Ergodic theorem for Markov chains) Assume X is an
ergodic Markov chain and that f is bounded, then for any
initial distribution α,

1

n

n∑
k=1

f (Xk)→a.s.
∫

S
f (y) σ(dy).
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Simple Monte Carlo
If the goal is to compute an integral∫

g(x) σ(dx),

then, in circumstances in which the probability measure σ is
easy to simulate, simple Monte Carlo suggests creating
independent samples

X0(ω),X1(ω), . . .

having distribution σ. Then, by the law of large numbers,

lim
n→∞

1

n

n−1∑
j=0

g(Xj(ω)) =

∫
g(x) σ(dx) with probability 1.

The error is determined by the central limit theorem. If that
does not get the job done . . .
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Markov Chain Monte Carlo

Given a probability distribution σ, one way to sample from
this distribution is to

I construct an ergodic Markov chain whose stationary
distribution is σ, and

I use the ergodic theorem.

This strategy is used to

I Find the posterior distribution in a Bayesian statistics
problem

I The distribution of phylogenetic trees consistent with
the data.

I Find the (relative) positions of the atoms in a protein.

We will now explore the similarities and differences in these
two questions.
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Markov Chain Monte Carlo

We construct an irreducible Markov chain

X̃0, X̃1, . . .

having stationary distribution σ. The most commonly used
strategy to define this sequence is the method developed by
Metropolis and extended by Hastings.
Assume

I a countable state space S , (to avoid technical issues on
the first pass)

I σ is not trivial,

I T be a Markov transition matrix on S

I so that the the chain immediately enter states that have
positive σ probability.

In other words, if T (x , y) > 0 then σ{y} > 0.
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Metropolis Hastings Algorithm

Define

α(x , y) =

{
min

{
σ{y}T (y ,x)
σ{x}T (x ,y) , 1

}
, if σ{x}T (x , y) > 0,

1, if σ{x}T (x , y) = 0.

I If X̃n = x , generate a candidate value y with probability
T (x , y).

I With probability α(x , y), this candidate is accepted and
X̃n+1 = y .

I Otherwise, the candidate is rejected and X̃n+1 = x .

Consequently, the transition matrix for this Markov chain is

T̃ (x , y) = α(x , y)T (x , y) + (1− α(x , y))δx{y}.
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Metropolis Hastings Algorithm

Note that

I this algorithm only requires that we know the ratios
σ{y}/σ{x} and thus we do not need to normalize σ.

I if σ{x}T (x , y) > 0 and if σ{y} = 0, then α(x , y) = 0
and thus the chain cannot visit states with σ{y} = 0.

Claim. T̃ is the transition matrix for a reversible Markov
chain with stationary distribution σ.

We must show that σ satisfies the detailed balance equation
(1). Consequently, we can limit ourselves to the case x 6= y .
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Metropolis Hastings Algorithm

Case 1. σ{x}T (x , y) = 0.

In this case α(x , y) = 1 and T (x , y) = T̃ (x , y).

I If σ{y} = 0, then, σ{y}T̃ (y , x) = 0,

σ{x}T̃ (x , y) = σ{x}T (x , y) = 0,

and (1) holds.

I If σ{y} > 0 and T (y , x) > 0, then α(y , x) = 0,
T̃ (y , x) = 0 and (1) holds.

I If σ{y} > 0 and T (y , x) = 0, then α(y , x) = 1,
T̃ (y , x) = T (y , x) = 0 and (1) holds.
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Metropolis Hastings Algorithm
Case 2. σ{x}T (x , y) > 0 and α(x , y) = 1

In this case,

σ{x}T̃ (x , y) = σ{x}T (x , y).

In addition, α(y , x) ≤ 1 and

σ{y}T̃ (y , x) = σ{y}σ{x}T (x , y)

σ{y}T (y , x)
T (y , x) = σ{x}T (x , y).

Case 3. σ{x}T (x , y) > 0 and α(x , y) < 1.

σ{x}T̃ (x , y) = σ{x}σ{y}T (y , x)

σ{x}T (x , y)
T (x , y) = σ{y}T (y , x).

In addition, α(y , x) = 1 and

σ{y}T̃ (y , x) = σ{y}T (y , x).

Thus, the claim holds.
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Metropolis Hastings Algorithm

Example

The original Metropolis algorithm had T (x , y) = T (y , x)
and thus

α(x , y) = min

{
σ{y}
σ{x}

, 1

}
.

Example (Independent Chains)

Let {Xn; n ≥ 0} be independent discrete random variable
with distribution function f (x) = P{X0 = x}. Then

α(x , y) = min

{
w(y)

w(x)
, 1

}
,

where w(x) = f (x)/σ{x} is the importance weight function
that would be used in importance sampling if the
observations if observations were generated from f .
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Metropolis Hastings Algorithm

Example
Take T to be the transition matrix for a random walk on a
graph and let σ to be uniform measure. Then

T (x , y) =

{ 1
deg(x) , if x and y are adjacent

0, if not.

α(x , y) =

{
min

{
deg(x)
deg(y) , 1

}
, if x and y are adjacent

1, if not.

Thus, to visit each node of the graph with equal probability,
always move to a point with lower degree and move to a
point with a higher degree according to the ratio of degrees.
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Gibbs Sampling

The Gibbs sampler is a Metropolis Hastings algorithm
attuned to the case that the state space S is a high
dimensional vector space. Call this dimension N.

Let xk indicate the k-th coordinate of x and let x−k be x
with the k-th coordinate removed. Thus, for successive
values of k = 1, 2, . . .N, we find transition probabilities

T (xk , x
−k)

that change only one coordinate.
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Implementation Issues

I Any appropriate T will produce a sample from σ, but
some choices are much better than others.

I One long run is better than many short.

I Determinging run length - what is the burn-in time?

I Variance reduction

I Monitoring the output.

I Numerical stability
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Bayesian Posterior Distributions

The state space S is now the parameter space Ψ. The
probability distribution is the posterior distribution with
density

σ(θ) = fΘ|X (θ|x) = ζ(x)L(θ|x).π(θ)

Thus, the Metropolis-Hastings algorithm has

α(θ, ψ) =

{
min

{
fΘ|X (ψ|x)T (ψ,θ)

fΘ|X (θ|x)T (θ,ψ) , 1
}
, if fΘ|X (θ|x)T (θ, ψ) > 0,

1, if fΘ|X (θ|x)T (θ, ψ) = 0.
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Phylogenetic Reconstruction

The goal: Find the distribution of phylogenetic trees
consistent with the data.
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Phylogenetic Reconstruction - Model Parameters

For a Splitting Plus Growth Model
Parameters

I Na - ancestral population size

I ta - time of subpopulation split

I tg - time of population growth

I αi - subpopulation growth rates

I πi - subpopulation split proportions

Nuisance Parameters - from mutation model

I mutation rates

I mutation probabilities
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Phylogenetic Reconstruction - State Space

A genealogical tree can be described using three attributes.

I tree topology

I genotype of nodes

I branch lengths

With n terminal nodes, we have

(2n − 3)× (2n − 5)× · · · × 3× 1

topologies.

nodes 5 10 20 30

topologies 105 3.446× 107 8.201× 1021 4.952× 1038
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Phylogenetic Reconstruction - Markov Chain

Choose parameter values according a prior distribution π
The Markov chain T allows three types of moves

I Change an interior node genotype

I Change a branch length
I Change a tree topology

I Pick a node and detach a subtree from the parent of
the node.

I Attach with a probablility that depends on the genetic
similarity of the new parent.

Changing topology is a rare event compared to the other two
changes. Likelihood computed using a pruning algorithm.
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Protein Structure Prediction

I Prior distribution
I experimental parameters the 13Cα, 13Cβ , 13C′, 15N,

1Hα, and 1HN nuclear magnetic resonance chemical
shifts of the polypeptide backbone atoms

I protein fragments from the Protein Data Bank
I interproton distance restraints from multidimensional

nuclear Overhauser enhancement spectra. (Side chain
assignments are the most time consuming step.)

I ROSETTA selects two hundred fragments from the
crystallographic structural database that are similar in
amino acid sequence

I A Monte Carlo based assembly searches for compact,
low energy folds - the negative of a penalized score
function
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Protein Structure Prediction- Bayesian network

Using a hidden Markov model to give a better Gibbs sampler.

 

hidden state → dihedral angles amino acids (a), secondary
structure (s), and thecis or trans conformation of the peptide
bond (c).
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