Bivariate Transformations

October 29, 2009

Let X and Y be jointly continuous random variables with density function $f_{X,Y}$ and let g be a one to one transformation. Write (U,V) = g(X,Y). The goal is to find the density of (U,V).

1 Transformation of Densities

Above the rectangle from (u, v) to $(u + \Delta u, v + \Delta v)$ we have the joint density function $f_{U,V}(u, v)$ and probability

$$f_{U,V}(u,v)\Delta u\Delta v \approx P\{u < U \le u + \Delta u, v < V \le v + \Delta v\}$$

Write $(x,y) = g^{-1}(u,v)$, then this probability is equal to the area of image of the rectangle from (u,v) to $(u + \Delta u, v + \Delta v)$ under the map g^{-1} times the density $f_{X,Y}(x,y)$.

The linear approximations for g^{-1} give, in vector form, two sides in the parallelogram that approximates the image of the rectangle.

$$g^{-1}(u + \Delta u, v) \approx g^{-1}(u, v) + \frac{\partial}{\partial u}g^{-1}(u, v)\Delta u = (x, y) + \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)\Delta u,$$

and

$$g^{-1}(u,v+\Delta v)\approx g^{-1}(u,v)+\frac{\partial}{\partial v}g^{-1}(u,v)\Delta v=(x,y)+\left(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v}\right)\Delta v.$$

The area of the rectangle is given by the norm of the cross product

$$\Big| \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \right) \times \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \right) \Big| \Delta u \Delta v.$$

This is computed using the determinant of the Jacobian matrix

$$J(u,v) = \det \begin{pmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial y/\partial v \end{pmatrix}$$

Thus,

$$f_{U,V}(u,v)\Delta u\Delta v \approx f_{X,Y}(g^{-1}(u,v))|J(u,v)|\Delta u\Delta v$$

with the approximation improving as $\Delta u, \Delta v \to 0$. Thus, give the formula for the transformation of bivariate densities.

$$f_{U,V}(u,v) = f_{X,Y}(g^{-1}(u,v))|J(u,v)|.$$

Example 1. If A is a one-to-one linear transformation and (U, V) = A(X, Y), then

$$f_{U,V}(u,v) = f_{X,Y}(A^{-1}(u,v))|\det(A^{-1})| = \frac{1}{\det(A)}f_{X,Y}(A^{-1}(u,v)).$$

2 Convolution

Example 2 (convolution). Let

$$u = x + y, \quad v = x.$$

Then,

$$x = v, \quad y = u - v$$

and

$$J(u,v) = \det \left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right) = -1$$

This yields

$$f_{U,V}(u,v) = f_{X,Y}(v,u-v).$$

The marginal distribution for u can be found by taking an integral

$$f_U(u) = \int_{-\infty}^{\infty} f_{X,Y}(v, u - v) dv.$$

If X and Y are independent, then

$$f_U(u) = \int_{-\infty}^{\infty} f_X(v) f_Y(u - v) dv.$$

This is called the convolution is often written $f_{X+Y} = f_X * f_Y$.

Example 3. Let X and Y be independent random variables uniformly distributed on [0,1]. Then U=X+Y can take values from 0 to 2.

$$f_U(u) = \int_{-\infty}^{\infty} I_{[0,1]}(v) I_{[0,1]}(u-v) dv = \int_{0}^{1} I_{[0,1]}(u-v) dv.$$

Now

$$0 < u - v < 1$$
 or $u - 1 < v < u$.

In addition, 0 < v < 1. If 0 < u < 1, then combining the two restrictions gives 0 < v < u and

$$f_U(u) = \int_0^1 I_{[0,1]}(u-v) dv = \int_0^u dv = u.$$

If 1 < u < 2, then combining the two restrictions gives u < v < 1 and

$$f_U(u) = \int_0^1 I_{[0,1]}(u-v) dv = \int_u^1 dv = 1 - u.$$

Combining, we write

$$f_{X+Y}(u) = \begin{cases} u & \text{if } 0 < u < 1, \\ 1 - u & \text{if } 1 < u < 2. \end{cases}$$

Example 4. For X and Y be independent standard normal random variables. Then

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} = \frac{1}{2\pi} \exp{-\frac{x^2 + y^2}{2}}.$$

and change to polar coordinates. Here, we know the inverse tranformation $g^{-1}(x,y)$

$$x = r \cos \theta, \quad y = r \sin \theta.$$

The Jacobian matrix has determinant

$$J(u,v) = \det \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \det \begin{pmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{pmatrix} = r\cos^2 \theta + r\sin^2 \theta = r.$$

Thus,

$$f_{R,\Theta}(r,\theta) = \frac{1}{2\pi}r\exp{-\frac{r^2}{2}}.$$

As a consequence, R and Θ are independent and Θ is uniform on $[0,2\pi)$. In addition, this transformation explains the constant $1/\sqrt{2\pi}$ in the density for the standard normal. We can use this transformation and the probability transform to simulate a pair of independent standard normal random variables.

The cumulant distribution function for R, known as the **Rayleigh distribution**, $F_R(r) = 1 - \exp{-\frac{r^2}{2}}$. Thus, $F^{-1}(w) = \sqrt{-2\log(1-w)}$. If U and W are independent random variables uniformly distributed on [0,1], then so are U and V = 1 - W. We can represent the random variables R and Θ by

$$R = \sqrt{-2\log V}$$
 and $\Theta = 2\pi U$.

In turn, we can represent the random variables X and Y by

$$X = \sqrt{-2 \log V} \cos(2\pi U)$$
 and $Y = \sqrt{-2 \log V} \sin(2\pi U)$.

This is known as the Box-Muller transform.

Finally,

$$\theta = \begin{cases} \tan^{-1} \frac{y}{x}, & \text{if } x > 0, \\ \pi + \tan^{-1} \frac{y}{x}, & \text{if } x < 0. \end{cases}$$

The density of $T = \tan \Theta$.

$$f_T(t) = 2 \cdot \frac{1}{2\pi} \frac{1}{1+t^2} = \frac{1}{\pi} \frac{1}{1+t^2}.$$

The factor of 2 arises because the map $(x,y) \to \tan^{-1}(y/x)$ is 2 to 1. Thus, the Cauchy distribution arises from the ratio of independent normal random variables.

For discrete random variables, we can write the convolution

$$f_{X+Y}(u) = \sum_{v} f_X(v) f_Y(u-v).$$

Example 5. If X and Y are independent Poisson random variables with respective parameters λ and μ , then

$$f_{X+Y}(u) = \sum_{v=0}^{u} \frac{\lambda^{v}}{v!} e^{-\lambda} \frac{\mu^{u-v}}{(u-v)!} e^{-\mu} = \frac{1}{u!} e^{-(\lambda+\mu)} \sum_{v=0}^{u} \frac{u!}{v!(u-v)!} \lambda^{v} \mu^{u-v} = \frac{(\lambda+\mu)^{u}}{u!} e^{-(\lambda+\mu)}.$$

3 Tower Property

Again, if we write a(x) = E[g(Y)|X = x]. Then,

$$E[h(X)a(X)] = \int_{-\infty}^{\infty} h(x)a(x)f_X(x) dx = \int_{-\infty}^{\infty} h(x) \left(\int_{-\infty}^{\infty} g(y)f_{Y|X}(y|x) dy \right) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y)f_{Y|X}(y|x)f_X(x) dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y)f_{X,Y}(x,y) dy dx$$

$$= Eh(X)g(Y).$$

In summary, E[h(X)E[g(Y)|X]] = E[h(X)g(Y)]. A similar gives the identity for discrete random variables.

4 Law of Total Variance

$$Var(Y) = E[Y^2] - (EY)^2] = E[E[Y^2|X]] - (E[E[Y|X])^2]$$

= $E[Var(Y|X) + (E[Y|X]^2] - (E[E[Y|X])^2])$
= $E[Var(Y|X)] + Var(E[Y|X]).$

The second term is variance in Y due to the variation in X. The first term is the variation in Y given the value of X.

Example 6. For the bivariate standard normal,

$$E[Y|X] = \rho X$$
, so $Var(E[Y|X]) = \rho^2$

and

$$Var(Y|X) = 1 - \rho^2$$
, so $E[Var(Y|X)] = 1 - \rho^2$

giving

$$Var(Y) = (1 - \rho^2) + \rho^2 = 1.$$

5 Hierarchical Models

Because

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x).$$

we can introduce a bivariate density function by given the density for X and the conditional density for Y given the value for X. We then recover the density for Y by taking an integral. A similar statement holds for discrete random variables.

Example 7. Let X be a Poisson random variable with parameter λ and consider Y, the number of successes in X Bernoulli trials. Then,

$$f_X(x) = \frac{\lambda^x}{x!} e^{-\lambda}, \quad f_{Y|X}(y|x) = {x \choose y} p^y (1-p)^{x-y}.$$

In particular, the conditional mean E[Y|X] = pX and $EY = E[E[Y|X]] = E[pX] = p\lambda$. The conditional variance Var(Y|X) = p(1-p)X. Consequently, by the law of total variance,

$$Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) = E[p(1-p)X] + Var(pX) = p(1-p)\lambda + p^2\lambda = p\lambda.$$

The joint density,

$$f_{X,Y}(x,y) = {x \choose y} p^y (1-p)^{x-y} \frac{\lambda^x}{x!} e^{-\lambda}, \quad x \ge y$$

and

$$f_Y(y) = \sum_{x=0}^{\infty} f_{X,Y}(x,y) = \sum_{x=y}^{\infty} {x \choose y} p^y (1-p)^{x-y} \frac{\lambda^x}{x!} e^{-\lambda}$$

$$= \frac{(p\lambda)^y}{y!} \sum_{x=y}^{\infty} \frac{((1-p)\lambda)^{x-y}}{(x-y)!} \cdot e^{-\lambda} = \frac{(p\lambda)^y}{y!} e^{(1-p)\lambda} \cdot e^{-\lambda}$$

$$= \frac{(p\lambda)^y}{y!} e^{-p\lambda}.$$

Thus, we see that Y is a Poisson random variable with parameter $p\lambda$.

6 Multivariate Distributions

Many of the facts about bivariate distributions have straightforward generalizations to the general multivariate case.

- For a d-dimensional discrete random variable $X = (X_1, X_2, \dots, X_d)$, take $\mathbf{x} \in \mathbb{R}^d$, we have the probability mass function $f_X(\mathbf{x}) = P\{X = \mathbf{x}\}$.
 - For all \mathbf{x} , $f_X(\mathbf{x}) \geq 0$ and $\sum_{\mathbf{x}} f_X(\mathbf{x}) = 1$.
 - $-P\{X \in A\} = \sum_{\mathbf{x} \in A} f_X(\mathbf{x}) \text{ and } Eg(X) = \sum_{\mathbf{x}} g(\mathbf{x}) f_X(\mathbf{x})$
 - For $Y = (Y_1, Y_2, ..., Y_c)$ we have joint mass function $f_{X,Y}(\mathbf{x}, \mathbf{y}) = P\{X = \mathbf{x}, Y = \mathbf{y}\}$, marginal mass function $f_X(\mathbf{x}) = \sum_{\mathbf{y}} f_{X,Y}(\mathbf{x}, \mathbf{y})$, and conditional mass function $f_{Y|X}(\mathbf{y}|\mathbf{x}) = P\{Y = \mathbf{y}|X = \mathbf{x}\} = f_{X,Y}(\mathbf{x}, \mathbf{y})/f_X(\mathbf{x})$
 - $-E[g(Y)|X = \mathbf{x}] = \sum_{\mathbf{y}} g(y) f_{Y|X}(\mathbf{y}|\mathbf{x}).$
- For a d-dimensional continuous random variable $X=(X_1,X_2,\ldots,X_d)$, take $\mathbf{x}\in\mathbb{R}^d$, we have the probability density function $f_X(\mathbf{x})$.
 - For all \mathbf{x} , $f_X(\mathbf{x}) \geq 0$ and $\int_{\mathbb{R}^d} f_X(\mathbf{x}) d\mathbf{x} = 1$.
 - $-P\{X \in A\} = \int_A f_X(\mathbf{x}) d\mathbf{x} \text{ and } Eg(X) = \int_{\mathbb{R}^d} g(\mathbf{x}) f_X(\mathbf{x}) d\mathbf{x}$
 - For $Y = (Y_1, Y_2, ..., Y_c)$ we have joint density function $f_{X,Y}(\mathbf{x}, \mathbf{y})$, marginal density function $f_X(\mathbf{x}) = \int_{\mathbb{R}^c} f_{X,Y}(\mathbf{x}, \mathbf{y}) d\mathbf{y}$, and conditional density function $f_{Y|X}(\mathbf{y}|\mathbf{x}) = f_{X,Y}(\mathbf{x}, \mathbf{y})/f_X(\mathbf{x})$
 - $E[g(Y)|X = \mathbf{x}] = \int_{\mathbb{R}^c} g(y) f_{Y|X}(\mathbf{y}|\mathbf{x}).$

• Random variables X_1, X_2, \dots, X_d are independent provided that for any choice of sets A_1, A_2, \dots, A_d ,

$$P\{X_1 \in A_1, X_2 \in A_2, \dots, X_d \in A_d\} = P\{X_1 \in A_1\}P\{X_2 \in A_2\}\cdots P\{X_d \in A_d\}.$$

 For either mass functions or density functions, the joint mass or density function is the product of the 1-dimensional marginals.

$$f_X(\mathbf{x}) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_d}(x_d).$$

- $E[g_1(X_1)g_2(X_2)\cdots g_d(X_d)] = E[g_1(X_1)]E[g_2(X_2)]\cdots E[g_d(X_d)].$
- For discrete random variables, the probability generating function of the sum is the product of 1-dimensiional probability generating functions.

$$\rho_{X_1+X_2+\cdots+X_d}(z) = \rho_{X_1}(z)\rho_{X_2}(z)\cdots\rho_{X_d}(z).$$

 For continuous random variables, the moment generating function of the sum is the product of 1-dimensiional probability generating functions.

$$M_{X_1+X_2+\cdots+X_d}(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_d}(t).$$

• If $g: B \to \mathbb{R}^d$ is one-to-one, write U = g(X) and let $J(\mathbf{u})$ denote the Jacobian matrix for g^{-1} . Then the ij-th entry in matrix

$$J_{ij}(\mathbf{u}) = \frac{\partial x_i}{\partial u_j}.$$

The density of U is

$$f_U(\mathbf{u}) = f_X(g^{-1}(\mathbf{u})) \cdot |\det(J(\mathbf{u}))|.$$