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Let X and Y be jointly continuous random variables with density function fX,Y and let g be a one to
one transformation. Write (U, V ) = g(X,Y ). The goal is to find the density of (U, V ).

1 Transformation of Densities

Above the rectangle from (u, v) to (u + ∆u, v + ∆v) we have the joint density function fU,V (u, v) and
probability

fU,V (u, v)∆u∆v ≈ P{u < U ≤ u+ ∆u, v < V ≤ v + ∆v}

Write (x, y) = g−1(u, v), then this probability is equal to the area of image of the rectangle from (u, v)
to (u+ ∆u, v + ∆v) under the map g−1 times the density fX,Y (x, y).

The linear approximations for g−1 give, in vector form, two sides in the parallelogram that approximates
the image of the rectangle.

g−1(u+ ∆u, v) ≈ g−1(u, v) +
∂

∂u
g−1(u, v)∆u = (x, y) +

(
∂x

∂u
,
∂y

∂u

)
∆u,

and

g−1(u, v + ∆v) ≈ g−1(u, v) +
∂

∂v
g−1(u, v)∆v = (x, y) +

(
∂x

∂v
,
∂y

∂v

)
∆v.

The area of the rectangle is given by the norm of the cross product∣∣∣ (∂x
∂u
,
∂y

∂u

)
×
(
∂x

∂v
,
∂y

∂v

) ∣∣∣∆u∆v.

This is computed using the determinant of the Jacobian matrix

J(u, v) = det

 ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v


Thus,

fU,V (u, v)∆u∆v ≈ fX,Y (g−1(u, v))|J(u, v)|∆u∆v

with the approximation improving as ∆u,∆v → 0. Thus, give the formula for the transformation of bivariate
densities.

fU,V (u, v) = fX,Y (g−1(u, v))|J(u, v)|.
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Example 1. If A is a one-to-one linear transformation and (U, V ) = A(X,Y ), then

fU,V (u, v) = fX,Y (A−1(u, v))|det(A−1)| = 1
det(A)

fX,Y (A−1(u, v)).

2 Convolution

Example 2 (convolution). Let
u = x+ y, v = x.

Then,
x = v, y = u− v

and

J(u, v) = det
(

0 1
1 −1

)
= −1

This yields
fU,V (u, v) = fX,Y (v, u− v).

The marginal distribution for u can be found by taking an integral

fU (u) =
∫ ∞
−∞

fX,Y (v, u− v) dv.

If X and Y are independent, then

fU (u) =
∫ ∞
−∞

fX(v)fY (u− v) dv.

This is called the convolution is often written fX+Y = fX ∗ fY .

Example 3. Let X and Y be independent random variables uniformly distributed on [0, 1]. Then U = X+Y
can take values from 0 to 2.

fU (u) =
∫ ∞
−∞

I[0,1](v)I[0,1](u− v) dv =
∫ 1

0

I[0,1](u− v) dv.

Now
0 < u− v < 1 or u− 1 < v < u.

In addition, 0 < v < 1. If 0 < u < 1, then combining the two restrictions gives 0 < v < u and

fU (u) =
∫ 1

0

I[0,1](u− v) dv =
∫ u

0

dv = u.

If 1 < u < 2, then combining the two restrictions gives u < v < 1 and

fU (u) =
∫ 1

0

I[0,1](u− v) dv =
∫ 1

u

dv = 1− u.

Combining, we write

fX+Y (u) =
{
u if 0 < u < 1,
1− u if 1 < u < 2.
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Example 4. For X and Y be independent standard normal random variables. Then

fX,Y (x, y) =
1√
2π

exp−x
2

2
· 1√

2π
exp−y

2

2
=

1
2π

exp−x
2 + y2

2
.

and change to polar coordinates. Here, we know the inverse tranformation g−1(x, y)

x = r cos θ, y = r sin θ.

The Jacobian matrix has determinant

J(u, v) = det

 ∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

 = det

 cos θ −r sin θ

sin θ r cos θ

 = r cos2 θ + r sin2 θ = r.

Thus,

fR,Θ(r, θ) =
1

2π
r exp−r

2

2
.

As a consequence, R and Θ are independent and Θ is uniform on [0, 2π). In addition, this transformation
explains the constant 1/

√
2π in the density for the standard normal. We can use this transformation and

the probability transform to simulate a pair of independent standard normal random variables.
The cumulant distribution function for R, known as the Rayleigh distribution, FR(r) = 1− exp− r

2

2 .
Thus, F−1(w) =

√
−2 log(1− w). If U and W are independent random variables uniformly distributed on

[0, 1], then so are U and V = 1−W . We can represent the random variables R and Θ by

R =
√
−2 log V and Θ = 2πU.

In turn, we can represent the random variables X and Y by

X =
√
−2 log V cos(2πU) and Y =

√
−2 log V sin(2πU).

This is known as the Box-Muller transform.
Finally,

θ =
{

tan−1 y
x , if x > 0,

π + tan−1 y
x , if x < 0.

The density of T = tan Θ.

fT (t) = 2 · 1
2π

1
1 + t2

= · 1
π

1
1 + t2

..

The factor of 2 arises because the map (x, y)→ tan−1(y/x) is 2 to 1. Thus, the Cauchy distribution arises
from the ratio of independent normal random variables.

For discrete random variables, we can write the convolution

fX+Y (u) =
∑
v

fX(v)fY (u− v).

Example 5. If X and Y are independent Poisson random variables with respective parameters λ and µ,
then

fX+Y (u) =
u∑
v=0

λv

v!
e−λ

µu−v

(u− v)!
e−µ =

1
u!
e−(λ+µ)

u∑
v=0

u!
v!(u− v)!

λvµu−v =
(λ+ µ)u

u!
e−(λ+µ).
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3 Tower Property

Again, if we write a(x) = E[g(Y )|X = x]. Then,

E[h(X)a(X)] =
∫ ∞
−∞

h(x)a(x)fX(x) dx =
∫ ∞
−∞

h(x)
(∫ ∞
−∞

g(y)fY |X(y|x) dy
)
fX(x) dx

=
∫ ∞
−∞

∫ ∞
−∞

h(x)g(y)fY |X(y|x)fX(x) dydx =
∫ ∞
−∞

∫ ∞
−∞

h(x)g(y)fX,Y (x, y) dydx

= Eh(X)g(Y ).

In summary, E[h(X)E[g(Y )|X]] = E[h(X)g(Y )]. A similar gives the identity for discrete random vari-
ables.

4 Law of Total Variance

Var(Y ) = E[Y 2]− (EY )2] = E[E[Y 2|X]]− (E[E[Y |X])2]
= E[Var(Y |X) + (E[Y |X]2]− (E[E[Y |X])2])
= E[Var(Y |X)] + Var(E[Y |X]).

The second term is variance in Y due to the variation in X. The first term is the variation in Y given
the value of X.

Example 6. For the bivariate standard normal,

E[Y |X] = ρX, so Var(E[Y |X]) = ρ2

and
Var(Y |X) = 1− ρ2, so E[Var(Y |X)] = 1− ρ2

giving
Var(Y ) = (1− ρ2) + ρ2 = 1.

5 Hierarchical Models

Because
fX,Y (x, y) = fY |X(y|x)fX(x).

we can introduce a bivariate density function by given the density for X and the conditional density for Y
given the value for X. We then recover the density for Y by taking an integral. A similar statement holds
for discrete random variables.

Example 7. Let X be a Poisson random variable with parameter λ and consider Y , the number of successes
in X Bernoulli trials. Then,

fX(x) =
λx

x!
e−λ, fY |X(y|x) =

(
x

y

)
py(1− p)x−y.
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In particular, the conditional mean E[Y |X] = pX and EY = E[E[Y |X]] = E[pX] = pλ. The conditional
variance Var(Y |X) = p(1− p)X. Consequently, by the law of total variance,

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]) = E[p(1− p)X] + V ar(pX) = p(1− p)λ+ p2λ = pλ.

The joint density,

fX,Y (x, y) =
(
x

y

)
py(1− p)x−y λ

x

x!
e−λ, x ≥ y

and

fY (y) =
∞∑
x=0

fX,Y (x, y) =
∞∑
x=y

(
x

y

)
py(1− p)x−y λ

x

x!
e−λ

=
(pλ)y

y!

∞∑
x=y

((1− p)λ)x−y

(x− y)!
· e−λ =

(pλ)y

y!
e(1−p)λ · e−λ

=
(pλ)y

y!
e−pλ.

Thus, we see that Y is a Poisson random variable with parameter pλ.

6 Multivariate Distributions

Many of the facts about bivariate distributions have straightforward generalizations to the general multi-
variate case.

• For a d-dimensional discrete random variable X = (X1, X2, . . . , Xd), take x ∈ Rd, we have the proba-
bility mass function fX(x) = P{X = x}.

– For all x, fX(x) ≥ 0 and
∑

x fX(x) = 1.

– P{X ∈ A} =
∑

x∈A fX(x) and Eg(X) =
∑

x g(x)fX(x)

– For Y = (Y1, Y2, . . . , Yc) we have joint mass function fX,Y (x,y) = P{X = x, Y = y}, marginal
mass function fX(x) =

∑
y fX,Y (x,y), and conditional mass function fY |X(y|x) = P{Y = y|X =

x} = fX,Y (x,y)/fX(x)

– E[g(Y )|X = x] =
∑

y g(y)fY |X(y|x).

• For a d-dimensional continuous random variable X = (X1, X2, . . . , Xd), take x ∈ Rd, we have the
probability density function fX(x).

– For all x, fX(x) ≥ 0 and
∫

Rd fX(x) dx. = 1.

– P{X ∈ A} =
∫
A
fX(x) dx and Eg(X) =

∫
Rd g(x)fX(x) dx

– For Y = (Y1, Y2, . . . , Yc) we have joint density function fX,Y (x,y), marginal density function
fX(x) =

∫
Rc fX,Y (x,y) dy, and conditional density function fY |X(y|x) = fX,Y (x,y)/fX(x)

– E[g(Y )|X = x] =
∫

Rc g(y)fY |X(y|x).
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• Random variables X1, X2, . . . , Xd are independent provided that for any choice of sets A1, A2, . . . , Ad,

P{X1 ∈ A1, X2 ∈ A2, . . . , Xd ∈ Ad} = P{X1 ∈ A1}P{X2 ∈ A2} · · ·P{Xd ∈ Ad}.

– For either mass functions or density functions, the joint mass or density function is the product
of the 1-dimensiional marginals.

fX(x) = fX1(x1)fX2(x2) · · · fXd
(xd).

– E[g1(X1)g2(X2) · · · gd(Xd)] = E[g1(X1)]E[g2(X2)] · · ·E[gd(Xd)].

– For discrete random variables, the probability generating function of the sum is the product of
1-dimensiional probability generating functions.

ρX1+X2+···+Xd
(z) = ρX1(z)ρX2(z) · · · ρXd

(z).

– For continuous random variables, the moment generating function of the sum is the product of
1-dimensiional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).

• If g : B → Rd is one-to-one, write U = g(X) and let J(u) denote the Jacobian matrix for g−1. Then
the ij-th entry in matrix

Jij(u) =
∂xi
∂uj

.

The density of U is
fU (u) = fX(g−1(u)) · | det(J(u)) |.
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