Bivariate Transformations
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Let X and Y be jointly continuous random variables with density function fx y and let g be a one to
one transformation. Write (U, V) = ¢(X,Y). The goal is to find the density of (U, V).

1 Transformation of Densities

Above the rectangle from (u,v) to (u + Au,v + Av) we have the joint density function fy v (u,v) and
probability
fov(u,v)AulAv = P{u<U <u+ Au,v <V < v+ Av}

Write (x,y) = g~ !(u,v), then this probability is equal to the area of image of the rectangle from (u,v)
to (u + Au,v + Av) under the map g~ times the density fx,y(z,y).

The linear approximations for g~! give, in vector form, two sides in the parallelogram that approximates
the image of the rectangle.
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The area of the rectangle is given by the norm of the cross product
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This is computed using the determinant of the Jacobian matrix
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Thus,
fuv (u,v)Aulv = fx v (g7 (u,0))|J (u, v)| Aulv

with the approximation improving as Au, Av — 0. Thus, give the formula for the transformation of bivariate
densities.

fov () = fxy (g~ (u,0))|J (u,v)].



Example 1. If A is a one-to-one linear transformation and (U, V) = A(X,Y), then
1

fuv(u,v) = fxy (A (u,v))|det(A™)| = me,Y(A_l(Ua v)).

2 Convolution

Example 2 (convolution). Let
u=x+y, V=T

Then,
T=v, Yy=u-—v

0 1
J(u,v)—det( 1 1 ) =-1

and

This yields
fov(u,v) = fxy(v,u—v).

The marginal distribution for u can be found by taking an integral
fulu) = / fxy(v,u—v)dv.

If X and Y are independent, then

fo(u) = /_00 Ix () fy (u—v) dv.

This is called the convolution is often written fxiyv = fx * fy.

Example 3. Let X andY be independent random variables uniformly distributed on [0,1]. ThenU = X+Y
can take values from 0 to 2.

0 1
fulu) = / Iip,1(v)Ijo11(u — v) dv = /0 Iip,1y(u — v) dv.
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Now
O<u—v<l or u—1<v<u.

In addition, 0 < v < 1. If 0 < u < 1, then combining the two restrictions gives 0 < v < u and

1 u
fU(U):/O I[o,l](ufv)dv:/o dv = u.

If 1 < u < 2, then combining the two restrictions gives u < v < 1 and

1 1
fU(u):/O 1[071](u—11)dv:/ dv=1-u.

Combining, we write
U if0<u<l,
l—u ifl<u<?2.

fx4y(u) = {



Example 4. For X and Y be independent standard normal random variables. Then
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and change to polar coordinates. Here, we know the inverse tranformation g=—'(z,y)

r=rcosf, y=rsinb.

The Jacobian matrixz has determinant

Ox/Or 0x/00 cos) —rsinf
J(u,v) = det = det =rcos? 0 +rsin?f = r.
dy/or 0y/00 sinf  rcosf
Thus,
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1
fro(r,8) = %r exp -5

As a consequence, R and © are independent and © is uniform on [0,27). In addition, this transformation
explains the constant 1/+/2m in the density for the standard normal. We can use this transformation and
the probability transform to simulate a pair of independent standard normal random variables.

The cumulant distribution function for R, known as the Rayleigh distribution, Fr(r) =1 —exp —%.

Thus, F~Y(w) = \/—2log(1 —w). If U and W are independent random variables uniformly distributed on
[0,1], then so are U and V =1—W. We can represent the random variables R and © by

R=+/—2logV and © =2nU.

In turn, we can represent the random variables X andY by

X =+/—2logVcos(2rU) and Y =+/—2logV sin(27U).

This is known as the Box-Muller transform.

Finally,
tan~! ¥, if £ >0,
9 = 513_1 Yy .
7 +tan™ 2, if © < 0.
The density of T' = tan ©.
1 1 1 1
fT(t) =9 =
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The factor of 2 arises because the map (x,y) — tan~'(y/x) is 2 to 1. Thus, the Cauchy distribution arises
from the ratio of independent normal random variables.

For discrete random variables, we can write the convolution
Py (@) =Y fx(v) fy(u—v).
v

Example 5. If X and Y are independent Poisson random variables with respective parameters \ and p,
then
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3 Tower Property

Again, if we write a(z) = E[g(Y)|X = z]. Then,

/ h@)a(a) fx (@ m-/iz(/ @hmwammw
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In summary, E[h(X)E[g(Y)|X]] = E[h(X)g(Y)]. A similar gives the identity for discrete random vari-
ables.

E[n(X)a(X)]

4 Law of Total Variance

Var(Y) = E[Y?]—(EY)’] = E[E[Y?|X]] - (E[E[Y|X])?]
= E[Var(Y|X) + (E[Y|X]’] - (B[E[Y]X])?])
= E[Var(Y|X)] + Var(E[Y|X]).

The second term is variance in Y due to the variation in X. The first term is the variation in Y given
the value of X.

Example 6. For the bivariate standard normal,
E[Y|X] = pX, so Var(E[Y|X]) =
and
Var(Y|X) =1 - p?, so E[Var(Y|X)] =1 — p?

qgving

Var(Y) = (1 —p*) +p® = 1.

5 Hierarchical Models

Because
Ixy(z,y) = fyix(ylr) fx(x).

we can introduce a bivariate density function by given the density for X and the conditional density for Y
given the value for X. We then recover the density for Y by taking an integral. A similar statement holds
for discrete random variables.

Example 7. Let X be a Poisson random variable with parameter A and consider Y, the number of successes
in X Bernoulli trials. Then,

o) = Spe N foielole) = (7)o -,



In particular, the conditional mean E[Y|X] = pX and EY = E[E[Y|X]] = E[pX] = p\. The conditional
variance Var(Y|X) = p(1 — p)X. Consequently, by the law of total variance,

Var(Y') = E[Var(Y|X)] + Var(E[Y| X))

The joint density,

= E[p(1 —p)X] + Var(pX) = p(1 — p)A + p°X = pA.

X _ _
fxy(z,y) = (y)py(l —p)TV et x>y

and

|

v =

_ (p>‘)y —pA
= y'

Thus, we see that'Y is a Poisson random variable with parameter pA.

6 Multivariate Distributions

Many of the facts about bivariate distributions have straightforward generalizations to the general multi-

variate case.

e For a d-dimensional discrete random variable X =

bility mass function fx(x) = P{X = x}.

For all x, fx(x)>0and >, fx(x) =
P{X € A} =3 e fx(x) and Eg(X) =

(X1, Xo,...,Xq), take x € R%, we have the proba-

25 9(%) fx (%)

— For Y = (Y1,Ys,...,Y.) we have joint mass function fxy(x,y) = P{X = x,Y =y}, marginal
mass function fx(x) = > fx v(x,y), and conditional mass function fy|x(y[x) = P{Y = y|X =

x} = fxy(%y)/fx(x)

= Elg(V)[X =x] =3y 9(v) frx (y|%)-

e For a d-dimensional continuous random variable X = (X, Xs,...,Xy), take x € R?, we have the

probability density function fx(x).

— For all x, fx(x) >0 and [, fx(x)
- P{X € A} = [, fx(x)dx and Eg(X

fx (%) dx

— For Y = (Y1,Ya,...,Y.) we have Jomt den31ty function fx y(x,y), marginal density function
fx(x) = fRL Ix,y(x,y)dy, and conditional density function fy|x(y|x) = fx,v(x,¥)/fx(x)

— E[g(V)|X =x] = [z 9) fyx (y%).



e Random variables X1, X5, ..., X are independent provided that for any choice of sets Ay, A, ..., Aqg,
P{Xl S Al,XQ S AQ,...,Xd € Ad} = P{Xl S Al}P{XQ € AQ}P{Xd € Ad}

— For either mass functions or density functions, the joint mass or density function is the product
of the 1-dimensiional marginals.

fx(x) = fx, (@1) fx, (22) -+ fx,(wa).

— Elg1(X1)92(X2) - - - ga(Xa)] = Elg1(X1)|E[g2(X2)] - - - E[ga(Xa)]-

— For discrete random variables, the probability generating function of the sum is the product of
1-dimensiional probability generating functions.

DX+ Xt X4(2) = px, (2)px,(2) - px,(2)-

— For continuous random variables, the moment generating function of the sum is the product of
1-dimensiional probability generating functions.

M, xo44 x4 (1) = Mx, () Mx, (t) - - Mx,(t).

e If g: B — RY is one-to-one, write U = g(X) and let J(u) denote the Jacobian matrix for g=!. Then
the ij-th entry in matrix

a 6uj '

Jij(a)

The density of U is
fo(u) = fx (g7 (u)) - [det(J(w))|.



