# Polynomial Approximations and Power Series 

June 24, 2016

## 1 Tangent Lines

One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function $f$. By the definition of the deriviative

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

and thus

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=p_{1}(x)
$$

Exercise 1. $p_{1}\left(x_{0}\right)=f\left(x_{0}\right)$ and $p_{1}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$

## 2 Taylor Polynomials

The Taylor polynomial of degree 2

$$
p_{2}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}
$$

agrees at $x_{0}$ for $f, f^{\prime}$, and $f^{\prime \prime}(x)$. Taking derivatives,

$$
\begin{array}{ll}
p_{2}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2} & p_{2}\left(x_{0}\right)=a_{0} \\
p_{2}^{\prime}(x)=a_{1}+2 a_{2}\left(x-x_{0}\right) & p_{2}\left(x_{0}\right)=a_{1} \\
p_{2}^{\prime \prime}(x)=2 a_{2} & p_{2}\left(x_{0}\right)=2 a_{2}
\end{array}
$$

Thus,

$$
a_{0}=f\left(x_{0}\right), \quad a_{1}=f^{\prime}\left(x_{0}\right) \quad a_{2}=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)
$$

Exercise 2. Find the second order Taylor polynomial for $\sin x, e^{x}, \ln (x+1)$, and $\sqrt{x+1}$ at $x_{0}=0$
If we continue, asking for a polynomial

$$
p_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+\cdots+a_{n}\left(x-x_{0}\right)^{n}=\sum_{j=0}^{n} a_{j}\left(x-x_{)}\right)^{j}
$$

of degree $n$ so that $p_{n}$ and its first $n$ derivatives agree with the corresponding values for $f$ and its iirst $n$ derivatives. Then, for the third derivative

$$
f^{\prime \prime \prime}\left(x_{0}\right)=p_{n}^{\prime \prime \prime}\left(x_{0}\right)=3 \cdot 2 \cdot 1 a_{3} \quad a_{3}=\frac{1}{3 \cdot 2 \cdot 1} f^{\prime \prime \prime}\left(x_{0}\right)=\frac{1}{3!} f^{\prime \prime \prime}\left(x_{0}\right)
$$

and the fourth derivative

$$
f^{\prime(4)}\left(x_{0}\right)=p_{n}^{(4)}\left(x_{0}\right)=4 \cdot 3 \cdot 2 \cdot 1 a_{4} \quad a_{4}=\frac{1}{4 \cdot 3 \cdot 2 \cdot 1} f^{\prime \prime \prime}\left(x_{0}\right)=\frac{1}{4!} f(4)\left(x_{0}\right)
$$

and, finally, for

$$
f^{\prime(n)}\left(x_{0}\right)=p_{n}^{(n)}\left(x_{0}\right)=n!a_{n} \quad a_{n}=\frac{1}{n!} f^{(n)}\left(x_{0}\right)
$$

Notice that the $n+1$-st derivative of $p_{n}(x)$ is 0 . Also, note that the value

$$
a_{k}=\frac{1}{k!} f^{(k)}\left(x_{0}\right)
$$

does not depend on $n$ as long as $k \leq n$.
Exercise 3. Find the fourth order Taylor polynomial for $\sin x, \ln x$, and $e^{x}$ at $x_{0}=1$
Exercise 4. Find the seventh order Taylor polynomial for $\sin x$ and $e^{x}$ at $x_{0}=0$
Exercise 5. Approximate $\sin \pi / 3$ using its seventh order Taylor polynomial.
We do not need to know a function explicitly to compute its Taylor polynomial. For example, if

$$
\begin{equation*}
y^{\prime}=x-2 y, \quad y(0)=1 \tag{1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
y^{\prime} & =x-2 y, & y^{\prime}(0) & =0-2 y(0)=-2 \\
y^{\prime \prime} & =1-2 y^{\prime} & y^{\prime \prime}(0)=1-2 y^{\prime}(0) & =1-2(-2)=5 \\
y^{\prime \prime \prime} & =-2 y^{\prime \prime} & y^{\prime \prime \prime}(0)=-2 y^{\prime \prime}(0) & =-10 \\
y^{\prime \prime \prime \prime} & =-2 y^{\prime \prime \prime} & y^{\prime \prime \prime \prime}(0)=-2 y^{\prime \prime \prime}(0) & =20
\end{aligned}
$$

and the four order polynomial for $y$ at $x_{0}=0$ is

$$
1+-2 x-\frac{5}{2} x^{2}-\frac{5}{3} x^{3}+\frac{5}{6} x^{4}
$$

Based on the generalized mean value theorem, careful analysis of the Taylor polynomial shows that we can obtain a bound on the error $E_{n}(x)$ between of the difference between $p_{n}(x)$ and $f(x)$, namely,

$$
\left|E_{n}(x)\right|=\left|f(x)-p_{n}(x)\right| \leq \frac{M}{(n+1)!}\left|x-x_{0}\right|^{n+1}
$$

where $M=\max f^{(n+1)}(x)$ on the interval between $x_{0}$ and $x$.
Exercise 6. Find the solution to (1) and then find the fourth order polynomial for $y$ at $x_{0}=0$ using this solution.

Exercise 7. Give an estimate on the error term for $p_{n}(x)$ for $f(x)=\sin x$.

## 3 Power Series

The next question is: Can we continue this approximation indefinitely? Is

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j}=\sum_{j=0}^{\infty} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j} f y(x) ?
$$

If so, for what values of $x$ does the limit converge.
First, we have to investigate the question: When does the limit:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n} a_{j}\left(x-x_{)}\right)^{j}=\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j} \tag{2}
\end{equation*}
$$

exist? Again, if so, for what values of $x$ does the limit converge.
We say that a power series (2) converges absolutely if

$$
\sum_{j=0}^{\infty}\left|a_{j}\left(x-x_{0}\right)^{j}\right|
$$

converges. If the limit fails to exist, we say that the power series diverges.

### 3.1 Radius of Convergence

A power series will converge for some values of the variable $x$ and may diverge for others. All power series converge at $x=x_{0}$. There is always a number $\rho$ with $0 \leq \rho \leq \infty$ such that the series converges absolutely whenever $\left|x-x_{0}\right|<\rho$ and diverges whenever $\left|x-x_{0}\right|>\rho$. This number is called the radius of convergence. The interval $\left(x_{0}-\rho, x_{0}+\rho\right)$ is called the interval of convergence.

The series may or may not converge for $\left|x-x_{0}\right|=\rho$. If (2) converges only for $x=x_{0}$, then $\rho=0$. If it converges for all $x$, then we say that $\rho=\infty$.

Exercise 8. The geometric series

$$
\sum_{j=0}^{\infty} a x^{j}
$$

has radius of convergence $\rho=1$. In this case, show that the infinite sum is

$$
\frac{a}{1-x}
$$

What happens for $|x|=1$ ?
The simplest test for a comparison test
If (2) converges absolutely for $x \in\left(x_{0}-\rho, x_{0}+\rho\right)$ and if for some number $J,\left|b_{j}\right|<\left|a_{j}\right|$ for all $j>J$, then

$$
\sum_{j=0}^{\infty} b_{j}\left(x-x_{0}\right)^{j}
$$

We have two tests for convergence based on comparisons with the geometric.

## Ratio Test

If the limit

$$
L=\lim _{j \rightarrow \infty}\left|\frac{a_{j}+1}{a_{j}}\right|
$$

exists, then in (2), the radius of convergence of (2) $\rho=L$.

## Root Test

If the limit

$$
\ell=\lim _{j \rightarrow \infty} \sqrt[j]{\left|a_{j}\right|}
$$

exists, then in (2), the radius of convergence of $\rho=1 / \ell$. (Here, $1 / 0=\infty$.)
Exercise 9. Find the radius of convergence for

$$
\sum_{j=0}^{\infty} j^{2} x^{j}, \quad \sum_{j=0}^{\infty} \frac{2^{j}}{j}(x-1)^{j}, \quad \text { and } \quad \sum_{j=0}^{\infty} \frac{1}{j!} x^{j}
$$

### 3.2 Arithmetic Operations

Let $f$ and $g$ be two power series converging in a interval about $x_{0}$.

$$
\begin{aligned}
f(x) & =\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j} \\
g(x) & =\sum_{j=0}^{\infty} b_{j}\left(x-x_{0}\right)^{j}
\end{aligned}
$$

## Addition and Subtraction

The power series of the sum or difference of the functions can be obtained by termwise addition and subtraction.

$$
f(x) \pm g(x)=\sum_{j=0}^{\infty}\left(a_{j} \pm b_{j}\right)\left(x-x_{)}\right)^{j}
$$

## Multiplication

The power series for the product is sometimes called the Cauchy product.

$$
f(x) g(x)=\sum_{j=0}^{\infty} c_{j}\left(x-x_{0}\right)^{j}
$$

where

$$
c_{j}=\sum_{i=0}^{j} a_{i} b_{j-i}=(a * b)_{j}
$$

This is is known as the convolution of the sequences $a_{j}$ and $b_{j}$.

### 3.3 Uniqueness of Power Series

We begin with the following fact, which is somewhat technical to prove.
If a power series is equal to 0 is some interval then each of the coefficients $a_{j}$ is 0 .
In particular, if two power series

$$
\sum_{j=0}^{\infty} b_{j}\left(x-x_{0}\right)^{j} \quad \text { and } \quad \sum_{j=0}^{\infty} c_{j}\left(x-x_{0}\right)^{j}
$$

agree for $x$ in some interval, then the difference

$$
0=\sum_{j=0}^{\infty} b_{j}\left(x-x_{0}\right)^{j}-\sum_{j=0}^{\infty} c_{j}\left(x-x_{0}\right)^{j}=\sum_{j=0}^{\infty}\left(b_{j}-c_{j}\right)\left(x-x_{0}\right)^{j}
$$

and so $b_{j}=c_{j}$ for all all $j$.

### 3.4 Differentiation and Integration

Power series are differentiable on the domain of convergence. So, for $x \in\left(x_{0}-\rho, x_{0}+\rho\right)$

## Differentiation

Termwise differentiation gives the power series for the derivative.

$$
f^{\prime}(x)=\sum_{j=1}^{\infty} j a_{j}\left(x-x_{0}\right)^{j-1}
$$

Because

$$
\left|\frac{a_{j+1}}{a_{j}}\right| \rightarrow \rho, \quad \text { we have } \quad\left|\frac{(j+1) a_{j+1}}{j a_{j}}\right| \rightarrow \rho
$$

and $f^{\prime}$ has the same radius of convergence as $f$.

## Integration

Termwise integration gives the power series for the integral.

$$
\begin{gathered}
\int f(x) d x=\sum_{j=0}^{\infty} \frac{a_{j}}{j+1}\left(x-x_{0}\right)^{j+1}+c \\
\left|\frac{a_{j+1}}{a_{j}}\right| \rightarrow \rho, \quad \text { we have }\left|\frac{a_{j+1} /(j+2}{a_{j} /(j+1)}\right| \rightarrow \rho
\end{gathered}
$$

and $\int f$ has the same radius of convergence as $f$.
Exercise 10. Use the fact that the geometric series

$$
\sum_{j=0}^{\infty} x^{j}=\frac{1}{1-x} .
$$

to determine the power series for

$$
\frac{1}{(1-x)^{2}} \quad \frac{1}{1+x} \quad \ln (1+x) \quad \frac{1}{1+x^{2}} \quad \tan ^{-1}(x) .
$$

Exercise 11. Show that

$$
\sum_{j=j_{0}}^{\infty} a_{j} x^{j}=\sum_{j=j_{0}+\ell}^{\infty} a_{j-\ell} x^{j-\ell}
$$

### 3.5 Analytic Functions

A function $f$ is called analytic at $x_{0}$ is $f$ can be represented as a power series centered at $x_{0}$ with a positive radius of convergence.

$$
f(x)=\sum_{j=0}^{\infty} a_{n}\left(x-x_{0}\right)^{j}, \quad\left|x-x_{0}\right|<\rho
$$

## Properties of Analytic Functions

- Polynomials are analytic for every value $x_{0}$.
- If $f$ and $g$ are analytic at $x_{0}$ so are $f+g, f g$, and $f / g$ provided that $g\left(x_{0}\right) \neq 0$.
- All the derivatives of $f$ are analytic with the same interval of convergence as $f$.
- The antiderivative of $f$ is analytic with the same interval of convergence as $f$.
- The terms

$$
a_{j}=\frac{f^{(j)}\left(x_{0}\right)}{j!}
$$

Thus, the power series is the limit of the Taylor polynomials.

- Any power seriesregardless of how it is derived? that converges in some neighborhood of $x_{0}$ to a function is the Taylor series of that function.

Exercise 12. Explain why

$$
\left(x-x_{0}\right)^{p}
$$

is not analytic at $x_{0}$ if $p<0$ or if $p>0$ and not an integer.

