
Polynomial Approximations and Power Series

June 24, 2016

1 Tangent Lines

One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a
differentiable function f . By the definition of the deriviative

f ′(x0) ≈ f(x)− f(x0)

x− x0
and thus

f(x) ≈ f(x0) + f ′(x0)(x− x0) = p1(x).

Exercise 1. p1(x0) = f(x0) and p′1(x0) = f ′(x0)

2 Taylor Polynomials

The Taylor polynomial of degree 2

p2(x) = a0 + a1(x− x0) + a2(x− x0)2

agrees at x0 for f , f ′, and f ′′(x). Taking derivatives,

p2(x) = a0 + a1(x− x0) + a2(x− x0)2 p2(x0) = a0
p′2(x) = a1 + 2a2(x− x0) p2(x0) = a1
p′′2(x) = 2a2 p2(x0) = 2a2

Thus,

a0 = f(x0), a1 = f ′(x0) a2 =
1

2
f ′′(x0).

Exercise 2. Find the second order Taylor polynomial for sinx, ex, ln(x+ 1), and
√
x+ 1 at x0 = 0

If we continue, asking for a polynomial

pn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)n =

n∑
j=0

aj(x− x))j
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of degree n so that pn and its first n derivatives agree with the corresponding values for f and its iirst n
derivatives. Then, for the third derivative

f ′′′(x0) = p′′′n (x0) = 3 · 2 · 1a3 a3 =
1

3 · 2 · 1
f ′′′(x0) =

1

3!
f ′′′(x0),

and the fourth derivative

f ′(4)(x0) = p(4)n (x0) = 4 · 3 · 2 · 1a4 a4 =
1

4 · 3 · 2 · 1
f ′′′(x0) =

1

4!
f(4)(x0),

and, finally, for

f ′(n)(x0) = p(n)n (x0) = n!an an =
1

n!
f (n)(x0),

Notice that the n+ 1-st derivative of pn(x) is 0. Also, note that the value

ak =
1

k!
f (k)(x0)

does not depend on n as long as k ≤ n.

Exercise 3. Find the fourth order Taylor polynomial for sinx, lnx, and ex at x0 = 1

Exercise 4. Find the seventh order Taylor polynomial for sinx and ex at x0 = 0

Exercise 5. Approximate sinπ/3 using its seventh order Taylor polynomial.

We do not need to know a function explicitly to compute its Taylor polynomial. For example, if

y′ = x− 2y, y(0) = 1. (1)

Then,
y′ = x− 2y, y′(0) = 0− 2y(0) = −2
y′′ = 1− 2y′ y′′(0) = 1− 2y′(0) = 1− 2(−2) = 5
y′′′ = −2y′′ y′′′(0) = −2y′′(0) = −10
y′′′′ = −2y′′′ y′′′′(0) = −2y′′′(0) = 20

and the four order polynomial for y at x0 = 0 is

1 +−2x− 5

2
x2 − 5

3
x3 +

5

6
x4.

Based on the generalized mean value theorem, careful analysis of the Taylor polynomial shows that we
can obtain a bound on the error En(x) between of the difference between pn(x) and f(x), namely,

|En(x)| = |f(x)− pn(x)| ≤ M

(n+ 1)!
|x− x0|n+1,

where M = max f (n+1)(x) on the interval between x0 and x.

Exercise 6. Find the solution to (1) and then find the fourth order polynomial for y at x0 = 0 using this
solution.

Exercise 7. Give an estimate on the error term for pn(x) for f(x) = sinx.
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3 Power Series

The next question is: Can we continue this approximation indefinitely? Is

lim
n→∞

n∑
j=0

f (j)(x0)

j!
(x− x0)j =

∞∑
j=0

f (j)(x0)

j!
(x− x0)jfy(x)?

If so, for what values of x does the limit converge.
First, we have to investigate the question: When does the limit:

lim
n→∞

n∑
j=0

aj(x− x))j =

∞∑
j=0

aj(x− x0)j (2)

exist? Again, if so, for what values of x does the limit converge.
We say that a power series (2) converges absolutely if

∞∑
j=0

|aj(x− x0)j |

converges. If the limit fails to exist, we say that the power series diverges.

3.1 Radius of Convergence

A power series will converge for some values of the variable x and may diverge for others. All power series
converge at x = x0. There is always a number ρ with 0 ≤ ρ ≤ ∞ such that the series converges absolutely
whenever |x−x0| < ρ and diverges whenever |x−x0| > ρ. This number is called the radius of convergence.
The interval (x0 − ρ, x0 + ρ) is called the interval of convergence.

The series may or may not converge for |x− x0| = ρ. If (2) converges only for x = x0, then ρ = 0. If it
converges for all x, then we say that ρ =∞.

Exercise 8. The geometric series
∞∑
j=0

axj

has radius of convergence ρ = 1. In this case, show that the infinite sum is

a

1− x
.

What happens for |x| = 1?

The simplest test for a comparison test
If (2) converges absolutely for x ∈ (x0 − ρ, x0 + ρ) and if for some number J , |bj | < |aj | for all j > J ,

then
∞∑
j=0

bj(x− x0)j

We have two tests for convergence based on comparisons with the geometric.
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Ratio Test

If the limit

L = lim
j→∞

∣∣∣∣aj + 1

aj

∣∣∣∣
exists, then in (2), the radius of convergence of (2) ρ = L.

Root Test

If the limit

` = lim
j→∞

j

√
|aj |

exists, then in (2), the radius of convergence of ρ = 1/`. (Here, 1/0 =∞.)

Exercise 9. Find the radius of convergence for

∞∑
j=0

j2xj ,

∞∑
j=0

2j

j
(x− 1)j , and

∞∑
j=0

1

j!
xj

3.2 Arithmetic Operations

Let f and g be two power series converging in a interval about x0.

f(x) =

∞∑
j=0

aj(x− x0)j

g(x) =

∞∑
j=0

bj(x− x0)j

Addition and Subtraction
The power series of the sum or difference of the functions can be obtained by termwise addition and

subtraction.

f(x)± g(x) =

∞∑
j=0

(aj ± bj)(x− x))j .

Multiplication
The power series for the product is sometimes called the Cauchy product.

f(x)g(x) =

∞∑
j=0

cj(x− x0)j

where

cj =

j∑
i=0

aibj−i = (a ∗ b)j .

This is is known as the convolution of the sequences aj and bj .
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3.3 Uniqueness of Power Series

We begin with the following fact, which is somewhat technical to prove.

If a power series is equal to 0 is some interval then each of the coefficients aj is 0.
In particular, if two power series

∞∑
j=0

bj(x− x0)j and

∞∑
j=0

cj(x− x0)j

agree for x in some interval, then the difference

0 =

∞∑
j=0

bj(x− x0)j −
∞∑
j=0

cj(x− x0)j =

∞∑
j=0

(bj − cj)(x− x0)j

and so bj = cj for all all j.

3.4 Differentiation and Integration

Power series are differentiable on the domain of convergence. So, for x ∈ (x0 − ρ, x0 + ρ)

Differentiation
Termwise differentiation gives the power series for the derivative.

f ′(x) =

∞∑
j=1

jaj(x− x0)j−1

Because ∣∣∣∣aj+1

aj

∣∣∣∣→ ρ, we have

∣∣∣∣ (j + 1)aj+1

jaj

∣∣∣∣→ ρ

and f ′ has the same radius of convergence as f .

Integration
Termwise integration gives the power series for the integral.∫

f(x) dx =

∞∑
j=0

aj
j + 1

(x− x0)j+1 + c

∣∣∣∣aj+1

aj

∣∣∣∣→ ρ, we have

∣∣∣∣aj+1/(j + 2

aj/(j + 1)

∣∣∣∣→ ρ

and
∫
f has the same radius of convergence as f .

Exercise 10. Use the fact that the geometric series

∞∑
j=0

xj =
1

1− x
.

to determine the power series for

1

(1− x)2
1

1 + x
ln(1 + x)

1

1 + x2
tan−1(x).

5



Exercise 11. Show that
∞∑

j=j0

ajx
j =

∞∑
j=j0+`

aj−`x
j−`

3.5 Analytic Functions

A function f is called analytic at x0 is f can be represented as a power series centered at x0 with a positive
radius of convergence.

f(x) =

∞∑
j=0

an(x− x0)j , |x− x0| < ρ

Properties of Analytic Functions

• Polynomials are analytic for every value x0.

• If f and g are analytic at x0 so are f + g, fg, and f/g provided that g(x0) 6= 0.

• All the derivatives of f are analytic with the same interval of convergence as f .

• The antiderivative of f is analytic with the same interval of convergence as f .

• The terms

aj =
f (j)(x0)

j!

Thus, the power series is the limit of the Taylor polynomials.

• Any power seriesregardless of how it is derived? that converges in some neighborhood of x0 to a
function is the Taylor series of that function.

Exercise 12. Explain why
(x− x0)p

is not analytic at x0 if p < 0 or if p > 0 and not an integer.
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