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1 Overview

Typically, statistical inference uses the following structure:
We observe a realization of random variables on a sample space X ,

X(s) = (X1(s), · · · , Xn(s))

where each of the Xi has the same distribution. The random variable may be independent in the case of
sampling with replacement or more generally exchangeable as in the case of sampling without replacement
from a finite population. The aim of the inference is to say something about which distribution it is.

We usually restrict the allowable distributions to be from some class P. If these distributions can be
indexed by a set Ω ⊂ Rd, then P is called a parametric family. We generally set up this indexing so that the
parameterization is identifiable. i.e., the mapping from Ω to P is one to one.

For a parameter choice θ ∈ Ω, we denote the distribution of the observations by Pθ and the expectation
by Eθ.

Often, the distributions of X are absolutely continuous with respect to some reference measure ν on X
for each value of the parameter. Thus, X has a density fX|Θ(x|θ) and

Pθ{X ∈ B} =
∫
B

fX|Θ(x|θ) ν(dx).

The most typical choices for (X , ν) are

1. X is a subset of Rk and ν is Lebesgue measure. Thus,
∫
B
fX|Θ(x|θ) ν(dx) =

∫
B
fX|Θ(x|θ) dx.

2. X is a subset of Zk and ν is counting measure. Thus,
∫
B
fX|Θ(x|θ) ν(dx) =

∑
x∈B fX|Θ(x|θ).

For an observation X(s) = x, we can consider the density as a function, L, of θ. L(θ) = fX|Θ(x|θ) is
called the likelihood function.

1.1 Classical Statistics

Suppose we are interested in deciding if the parameter Θ lies in one portion ΩH of the parameter space. We
can then set a hypothesis

H : Θ ∈ ΩH ,

versus the alternative hypothesis,
A : Θ /∈ ΩH .

A simple test of this hypothesis would be to choose a rejection region R, and a decision function d and
reject H if d(x) ∈ R. The power function

β(θ) = Pθ{d(X) ∈ R}

gives, for each value of the parameter θ, the probabilty that the hyothesis is rejected.

Example. Suppose that, under the probability Pθ, X consists of n independentN(θ, 1) random variables.
The usual two-sided α test of

H : Θ = θ0 versus A : Θ 6= θ0
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is to reject H if X̄ ∈ R,

R = (θ0 −
1√
n

Φ−1(
α

2
), θ0 +

1√
n

Φ−1(1− α

2
))c.

Φ is the cumulative distribution function of a standard normal random variable.

An estimator φ of g(θ) is unbiased if

Eθ[φ(X)] = g(θ) for all θ ∈ Ω.

An estimator φ of θ is a maximum likelihood estimator (MLE) if

sup
θ∈Ω

L(θ) = L(φ(x)) for all x ∈ X .

An estimator ψ of g(θ) is a maximum likelihood estimator if ψ = g ◦ φ, where φ is defined above.

Exercise. x̄ is both an unbiased and a maximum likelihood estimate of the parameter for independent
N(θ, 1) random variables.

1.2 Bayesian Statistics

In Bayesian statistics, (X,Θ) is a random variable with state space X ×Ω. The distribution, µ of Θ on Ω is
called the prior distribution. Thus, the prior distribution and {Pθ : θ ∈ Ω} determine the joint distribution
of (X,Θ).

Pr{(X,Θ) ∈ B} =
∫ ∫

IB(x, θ)µX|Θ(dx|θ)µΘ(dθ).

Here, µX|Θ(·|θ) is the distribution of X under Pθ.
Consider the case in which µΘ has density fΘ and µX|Θ(·|θ) has density fX|Θ with respect to Lebesgue

measure, then

Pr{(X,Θ) ∈ B} =
∫ ∫

IB(x, θ)fX|Θ(x|θ)fΘ(θ) dx dθ.

After observing X = x, one constructs the conditional density of Θ given X = x using Bayes’ theorem.

fΘ|X(θ|x) =
fX|Θ(x|θ)fΘ(θ)∫

Ω
fX|Θ(x|t)fΘ(t) dt

.

This is called the posterior distribution.

Example. Suppose that given Θ = θ, X consists of n conditionally independent N(θ, 1) random vari-
ables. In addition, suppose that Θ is N(θ0, 1/λ). The likelihood function is

fX|Θ(x|θ) = (2π)−n/2 exp
(
− 1

2

n∑
i=1

(xi − θ)2
)

= (2π)−n/2 exp
(
− n

2
(θ − x̄)2 − 1

2

n∑
i=1

(xi − x̄)2
)
.
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and the prior density is

fΘ(θ) =

√
λ

2π
exp(−λ

2
(θ − θ0)2).

The numerator for posterior density has the form

k(x) exp(−1
2
(n(θ − x̄)2 + λ(θ − θ0)2)) = k̃(x) exp(−n+ λ

2
(θ − θ1(x))2).

where θ1(x) = (λθ0 +nx̄)/(λ+n). Thus, the posterior distribution is N(θ1(x), 1/(λ+n)). If n is small, then
θ1(x) is near θ0 and if n is large, θ1(x) is near x̄.

Inference is based on the posterior distribution. In the example above,∫
θf(Θ|X)(θ|x) dθ = θ1(x)

is an estimate for Θ.
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2 Probability Theory

2.1 σ-fields and Measures

We begin with a definition.

Definition. A nonempty collection A of subsets of a set S is called a field if

1. S ∈ A.

2. A ∈ A implies Ac ∈ A.

3. A1, A2 ∈ A implies A1 ∪A2 ∈ A.
If, in addition,

4. {An : n = 1, 2, · · ·} ⊂ A implies ∪∞n=1An ∈ A,
then A is called a σ-field.

The pair (S,A) is called a measurable space.

Exercise. An arbitrary intersection of σ-fields is a σ-field. The power set of S is a σ-field.

Let C be any collection of subsets. Then, σ(C) will denote the smallest sigma field containing C. By the
exercise above, this is the (non-empty) intersection of all σ-fields containing C.

Examples.

1. For a single set A, σ(A) = {∅, A,Ac, S}

2. If C is a σ-field, then σ(C) = C

3. If S ⊂ Rd, or, more generally, S is a topological space, and C is the set of the open sets in S, then σ(C)
is called the Borel σ-field and denoted B(S)

Because we often look at sequences of random variables, we will often consider the product space,

S =
∏
λ∈Λ

Sλ

If, for each λ, Aλ is a σ-field on Sλ, then the product σ-field is the smallest σ-field that contains all sets
of the form

∏
λ∈ΛAλ, where Aλ ∈ Aλ for all λ and Aλ = Sλ for all but finitely many λ .

Proposition. The Borel σ-field B(Rd) of Rd is the same as the product σ-field of k copies of B(R1).

Definition. Let (S,A) be a measurable space. A function µ : A → [0,∞] is called a measure if

1. µ(∅) = 0.

2. (Additivity) If A ∩B = ∅ then µ(A ∪B) = µ(A) + µ(B).

3. (Continuity) If A1 ⊂ A2 ⊂ · · ·, and A = ∪∞n=1An, then µ(A) = limn→∞ µ(An).
If in addition,
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4. (Normalization) µ(S) = 1, µ is called a probability.

The triple (S,A, µ) is called a measure space or a probability space in the case that µ is a probability. In
this situation, an element in S is called an outcome or realization and a member of A is called an event.

A measure µ is called σ-finite if can we can find {An;n ≥ 1} ∈ A, so that S = ∪∞n=1An and µ(An) <∞
for each n.

Examples.

1. (Counting measure, ν) For A ∈ A, ν(A) is the number of elements in A. Thus, ν(A) = ∞ if A has
infinitely many elements.

2. (Lebesgue measure m on (R1,B(R1)) For the open interval (a, b), set m(a, b) = b−a. Lebesgue measure
generalizes the notion of length. There is a maximum σ-field which is smaller than the power set in
which this measure can be defined.

3. (Product measure) Let {(Si,Ai, νi); 1 ≤ i ≤ k} be k σ-finite measure spaces. Then the product measure
ν1 × · · · × νk is the unique measure on σ(A1 × · · · × An) such that

ν1 × · · · × νk(A1 × · · · ×Ak) = ν1(A1) · · · ν(Ak) for all Ai ∈ Ai, i = 1, . . . k.

Lebesgue measure on Rk is the product measure of k copies of Lebesgue measure on R1.

We say A occurs almost everywhere (A a.e.) if µ(Ac) = 0. If µ is a probability, we say A occurs almost
surely (A a.s.). If f = g a.e., then we say that g is a version of f .

2.2 Measurable Functions and Integration

Let f : (S,A) → (T,B) be a function between two measurable spaces. We say that f is measureable if

f−1(B) ∈ A for every B ∈ B.

If the measure on (S,A) is a probability, f is called a random variable. We typically use capital letters
near the end of the alphabet for random variables.

Exercise. The collection
{f−1(B) : B ∈ B}

is a σ-field, denoted σ(f). Thus, f is measurable if and only if σ(f) ⊂ A.

If µ is a measure on (S,A), then f induces a measure ν on (T,B) by ν(B) = µ(f−1(B)) for B ∈ B.

Examples.

1. Let A be a measurable set. The indicator function for A, IA(s) equals 1 if s ∈ A, and 0 is s 6∈ A.

2. A simple function e take on a finite number of distinct values, e(x) =
∑n
i=1 aiIAi(x), A1, · · · , An ∈ A,

and a1, · · · , an ∈ S. Call this class of functions E .
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3. A and B are Borel σ-fields and f is a continuous function.

For a simple function e define the integral of e with respect to the measure µ as∫
e dµ =

n∑
i=1

aiµ(Ai).

You can check that the value of
∫
e dµ does not depend on the choice for the representation of e. By

convention 0×∞ = 0.

For f a non-negative measurable function, define the integral of f with respect to the measure µ as∫
S

f(s) µ(ds) =
∫
f dµ = sup{

∫
e dµ : e ∈ E , e ≤ f}.

Again, you can check that the integral of a simple function is the same under either definition.

For general functions, denote the positive part of f , f+(s) = max{f(s), 0} and the negative part of f by
f−(s) = −min{f(s), 0}. Thus, f = f+ − f− and |f | = f+ + f−.

If f is a real valued measurable function, then define the integral of f with respect to the measure µ as∫
f(s) µ(ds) =

∫
f+(s) µ(ds)−

∫
f−(s) µ(ds).

provided at least one of the integrals on the right is finite. If
∫
|f | du <∞, then we say that f is integrable.

We typically write
∫
A
f(s) µ(ds) =

∫
IA(s)f(s) µ(ds).

If the underlying measure is a probability, then we typically call the integral, the expectation or the
expected value and write,

EX =
∫
X dµ.

Exercise. If f = g a.e., then
∫
f dµ =

∫
g dµ.

Examples.

1. If µ is counting measure on S, then
∫
f dµ =

∑
s∈S f(s).

2. If µ is Lebesgue measure and f is Riemann integrable, then
∫
fdµ =

∫
f dx, the Riemann integral.

The integral is a positive linear functional, i.e.

1.
∫
f dµ ≥ 0 whenever f is non-negative and measurable.

2.
∫

(af + bg) dµ = a
∫
f dµ+

∫
g dµ for real numbers a, b and integrable functions f, g.

8



Exercise. Any non-negative real valued measurable function is the increasing limit of measurable func-
tions, e.g.

fn(s) =
n2n∑
i=1

i− 1
2n

I{ i−1
2n <f≤ i

2n }(s) + nI{f>n}

Exercise. If {fn : n ≥ 1} is a sequence of measurable functions, then f(s) = lim infn→∞ fn(s) is
measurable.

Theorem. (Fatou’s Lemma) Let {fn : n ≥ 1} be a sequence of non-negative measurable functions.
Then ∫

lim inf
n→∞

fn(s) µ(ds) ≤ lim inf
n→∞

∫
fn(s) µ(ds).

Theorem. (Monotone Convergence) Let {fn : n ≥ 1} be an increasing sequence of non-negative
measurable functions. Then ∫

lim
n→∞

fn(s) µ(ds) = lim
n→∞

∫
fn(s) µ(ds).

Example. Let X be a non-negative random variable with cumulative distribution function FX(x) =
Pr{X ≤ x}. Set Xn(s) =

∑n2n

i=1
i−1
2n I{ i−1

2n <X≤ i
2n }(s). Then by the monotone convergence theorem and the

definition of the Riemann-Stieltjes integral

EX = lim
n→∞

EXn

= lim
n→∞

n2n∑
i=1

i− 1
2n

Pr{ i− 1
2n

< X ≤ i

2n
}

= lim
n→∞

n2n∑
i=1

i− 1
2n

(FX(
i

2n
)− FX(

i− 1
2n

))

=
∫ ∞

0

x dFX(x)

This can be generalized.

Theorem. Let f : (S1,A1) → (S2,A2). For a measure µ1 on S1, define the induced measure µ2(A) =
µ1(f−1(A)). Then, if g : S2 → R, ∫

g(s2) µ2(ds2) =
∫
g(f(s1)) µ1(ds1).

To prove this, use the “standard machine”.
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1. Show that the identity holds for indicator functions.

2. Show, by the linearity of the integral, that the identity holds for simple functions.

3. Show, by the monotone convergence theorem, that the identity holds for non-negative functions.

4. Show, by decomposing a function into its positive and negative parts, that it holds for integrable
functions.

To compute integrals based on product measures, we use Fubini’s theorem.

Theorem. Let (Si,Ai, µi), i = 1, 2 be two σ-finite measures. If f : S1 × S2 → R is integrable with
respect to µ1 × µ2, then∫

f(s1, s2) µ1 × µ2(ds1 × ds2) =
∫

[
∫
f(s1, s2) µ1(ds1)]µ2(ds2) =

∫
[
∫
f(s1, s2) µ2(ds2)]µ1(ds1).

Use the “standard machine” to prove this. Begin with indicators of sets of the form A1 × A2. (This
requires knowing arbitrary measurable sets can be approximated by a finite union of rectangles.) The identity
for non-negative functions is known as Tonelli’s theorem.

Exercises.

1. Let {fk : k ≥ 1} be a sequence of non-negative measurable functions. Then∫ ∞∑
k=1

fk(s) µ(dx) =
∞∑
k=1

∫
fk(s) µ(dx).

2. Let f be a non-negative measurable function, then

ν(A) =
∫
A

f(x) µ(dx)

is a measure.

Note that
µ(A) = 0 implies ν(A) = 0.

Whenever this holds for any two measures defined on the same measure space, we say that ν is absolutely
continuous with respect to µ. This is denoted by

ν << µ.

This exercise above has as its converse the following theorem.
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Theorem. (Radon-Nikodym) Let µi, i = 1, 2, be two measures on (S,A) such that µ2 << µ1, and
µ1 is σ-finite. Then there exists an extended real valued function f : S → [0,∞] such that for any A ∈ A,

µ2(A) =
∫
A

f(s) µ1(ds).

The function f , called the Radon-Nikodym derivative of µ2 with respect to µ1, is unique a.e. This
derivative is sometimes denoted

dµ2

dµ1
(s).

We also have the following calculus identities.

1. (Substitution)
∫
g dµ2 =

∫
g dµ2
dµ1

dµ1.

2. If λi, i = 1, 2, are measures, λi << µ1, then λ1 + λ2 << µ1 and

d(λ1 + λ2)
dµ1

=
dλ1

dµ1
+
dλ2

dµ1
. a.e. µ1

3. (Chain Rule) If µ3 is a measure, µ2 is σ-finite, and µ3 << µ2, then

dµ3

dµ1
=
dµ3

dµ2

dµ2

dµ1
a.e. µ1

In particular, if µ1 << µ2, then

dµ1

dµ2
= (

dµ2

dµ1
)−1 a.e. µ1 or µ2.

4. Let νi, i = 1, 2, be two measures on (T,B) such that ν2 << ν1, and ν1 is σ-finite. Then

µ2 × ν2 << µ1 × ν1,

and
d(µ2 × ν2)
d(µ1 × ν1)

=
dµ2

dµ1

dν2
dν1

.

In the study of sufficient statistics, we will need the following theorem.

Theorem. (Halmos and Savage) Let µ be a σ-finite measure on (S,A). Let N be a collection of
nontrivial measures on (S,A) such that ν << µ for all ν ∈ N . Then, there exists a sequence of non-negative
numbers {ci : i ≥ 1},

∑∞
i=1 ci = 1 and a sequence of elements {νi : i ≥ 1} ⊂ N such that

ν <<
∞∑
i=1

ciνi for every ν ∈ N .

11



Proof. For µ finite, set λ = µ.
For µ infinite, pick a countable partition, {Si : i ≥ 1} of S such that 0 < µ(Si) <∞. Set

λ(B) =
∞∑
i=1

µ(B ∩ Si)
2iµ(Si)

for B ∈ A.

Thus, λ is a finite measure and ν << λ for all ν ∈ N . Define

Q = {
∞∑
i=1

aiνi :
∞∑
i=1

ai = 1, ai ≥ 0, νi ∈ N}.

If β ∈ Q, then β << λ. Now set

D = {C ∈ A : λ{x ∈ C : dQ/dλ(x) = 0} = 0, and Q(C) > 0, for some Q ∈ Q}.

Claim 1. D 6= ∅.
Set C = {x : dν/dλ(x) > 0} and Q = ν.
Then, {x ∈ C : dν/dλ(x) = 0} = ∅, and Q(C) = ν(C) = ν(S) > 0. Thus, C ∈ D. Note that

sup
C∈D

λ(C) = c ≤ λ(S) <∞.

Thus, choose a sequence {Ci : i ≥ 1} ⊂ D so that c = limi→∞ λ(Ci).
Because Ci ∈ D, we can find Qi so that

λ{x ∈ Ci : dQi/dλ(x) = 0} = 0, and Qi(Ci) > 0.

Define C0 = ∪∞i=1Ci and Q0 =
∑∞
i=1 2−iQi ∈ Q. Then, Q0(C0) > 0, dQ0/dλ =

∑∞
i=1 2−idQi/dλ and

{x ∈ C0 :
dQ0

dλ
(x) = 0} ⊂ ∪∞i=1{x ∈ Ci :

dQi
dλ

(x) = 0}.

Thus, C0 ∈ D and λ(C0) = c.
Claim 2. ν << Q0 for all ν ∈ N .
We show that for ν ∈ N , Q0(A) = 0 implies ν(A) = 0.
Define C = {x : dν/dλ(x) > 0} and write

ν(A) = ν(A ∩ C0) + ν(A ∩ Cc0 ∩ Cc) + ν(A ∩ Cc0 ∩ C).

Now, Q0(A∩C0) = 0 and dQ0/dλ > 0 on C0 imples that λ(A∩C0) = 0 and because ν << λ, ν(A∩C0) = 0.
Because dν/dλ = 0 on Cc, ν(A ∩ Cc0 ∩ Cc) = 0.
Finally, for D = A ∩ Cc0 ∩ C, suppose ν(D) > 0. Because ν << λ, λ(D) > 0.
D ⊂ C implies dν/dλ(x) > 0 on D, and

λ{x ∈ D : dν/dλ(x) = 0} = λ(∅) = 0.

Thus, D ∈ D and hence C ∪D ∈ D However, C0 ∩D = ∅, thus λ(C0 ∪D) > λ(C0), contradicting the
definition of c. Thus, ν(D) = 0.
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2.3 Conditional Expectation.

We will begin with a general definition of conditional expectation and show that this agrees with more
elementary definitions.

Definition. Let Y be an integrable random variable on (S,A, µ) and let C be a sub-σ-field of A. The
conditional expectation of Y given C, denoted E[Y |C] is the a.s. unique random variable satisfying the
following two conditions.

1. E[Y |C] is C-measurable.

2. E[E[Y |C]IA] = E[Y IA] for any A ∈ C.

Thus, E[Y |C] is essentially the only random variable that uses the information provided by C and gives
the same averages as Y on events that are in C. The uniqueness is provided by the Radon-Nikodym theorem.
For Y positive, define the measure

ν(C) = E[Y IC ] for C ∈ C.

Then ν is absolutely continuous with respect to the underlying probability restricted to C. Set E[Y |C] equal
to the Radon-Nikodym derivative dν/dP |C .

For B ∈ A, the conditional probability of B given C is defined to be P (B|C) = E[IB |C].

Exercises. Let C ∈ A, then P (B|σ(C)) = P (B|C)IC + P (B|Cc)ICc .
If C = σ{C1, · · · , Cn}, the σ-field generated by a finite partition, then

P (A|C) =
n∑
i=1

P (A|Ci)ICi
.

Theorem. (Bayes Formula) Let C ∈ C, then

P (C|A) =
E[P (A|C)IC ]
E[P (A|C)]

.

Proof. E[P (A|C)IC ] = E[IAIC ] = P (A ∩ C) and E[P (A|C)] = P (A).

Exercise. Show the Bayes formula for a finite partition {C1, · · · , Cn} is

P (Cj |A) =
P (A|Cj)P (Cj)∑n
i=1 P (A|Ci)P (Ci)

.

If C = σ(X), then we usually write E[Y |C] = E[Y |X]. For these circumstances, we have the following
theorem which can be proved using the standard machine.

Theorem. Let X be a random variable and let Z is a measurable function on (S, σ(X)) if and only if
there exists a measurable function h on the range of X so that Z = h(X).

13



Thus, E[g(Y )|X] = h(X). If X is discrete, taking on the values x1, x2, · · ·, then by property 2,

E[g(Y )I{X=xi}] = E[E[g(Y )|X]I{X=xi}]
= E[h(X)I{X=xi}]
= h(xi)P{X = xi}.

Thus,

h(xi) =
E[Y I{X=xi}]
P{X = xi}

.

If, in addition, Y is discrete and the pair (X,Y ) has joint mass function f(X,Y )(x, y). Then,

E[g(Y )I{X=xi}] =
∑
j

g(yj)f(X,Y )(xi, yj).

Typically, we write h(x) = E[g(Y )|X = x], and for fX(x) = P{X = x}, we have

E[g(Y )|X = x] =
∑
j

g(yj)f(X,Y )(x, yj)
fX(x)

=
∑
j

g(yj)fY |X(yj |x).

We now look to extend the definition of E[g(X,Y )|X = x]. Let ν and λ be σ-finite measures and
consider the case in which (X,Y ) has a density f(X,Y ) with respect to ν × λ. Then the marginal density
fX(x) =

∫
f(X,Y )(x, y) λ(dy) and the conditional density

fY |X(y|x) =
f(X,Y )(x, y)
fX(x)

.

if fX(x) > 0 and 0 if fX(x) = 0. Set

h(x) =
∫
g(x, y)fY |X(y|x) λ(dy).

Claim. If E|g(X,Y )| <∞, then E[g(X,Y )|X] = h(X)

By the theorem above, h(X) is σ(X) measurable.
A typical element of σ(X) is {X ∈ B} for some Borel set B. We must show that

E[h(X)IB(X)] = E[g(X,Y )IB(X)].

Thus,

E[h(X)IB(X)] =
∫
IB(x)h(x)fX(x) ν(dx)

=
∫
IB(x)(

∫
g(x, y)fY |X(y|x) λ(dy))fX(x) ν(dx)

=
∫ ∫

g(x, y)IB(x)f(X,Y )(x, y) λ(dy)ν(dx)

= E[g(X,Y )IB(X)].
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Theorem. (Bayes) Suppose that X has a parametric family of distributions P0 of distributions with
parameter space Ω. Suppose that Pθ << ν for all θ ∈ Ω, and let fX|Θ(x|θ) be the conditional density of
X with respect to ν given that Θ = θ. Let µΘ be the prior distribution of Θ and let µΘ|X(·|x) denote the
conditional distribution of Θ given X = x.

1. Then µΘ|X(·|x) << µΘ, a.s. with respect to the marginal of X with Radon-Nikodym derivative

dµΘ|X

dµΘ
(θ|x) =

fX|Θ(x|θ)∫
Ω
fX|Θ(x|t)µΘ(dt)

.

for those x for which the denominator is neither 0 nor infinite.

2. If µΘ << λ for some σ-finite measure λ, and dµΘ/dλ = fΘ, then

dµΘ|X

dλ
(θ|x) =

fX|Θ(x|θ)fΘ(θ)∫
Ω
fX|Θ(x|t)fΘ(t)λ(dt)

.

Proof. Statement 2 follows from statement 1 by the chain rule.
To show 1, write m(x) =

∫
Ω
fX|Θ(x|t) µΘ(dt). Then∫

X
m(x) ν(dx) =

∫
X

∫
Ω

fX|Θ(x|t) µΘ(dt) ν(dx) =
∫

Ω

∫
X
fX|Θ(x|t) ν(dx)µΘ(dt) = 1.

Thus, m <∞ a.e. ν.
Choose x ∈ X with m(x) <∞ and define

P (B|x) =
1

m(x)

∫
B

fX|Θ(x|t) µΘ(dt)

for B in the σ-field on Ω. Note that P (·|x) is a probability on Ω a.e. ν. Thus, it remains to show that

P (B|x) = µΘ|X(B|x).

By Fubini’s theorem, P (B|·) is a measurable function of x. If µ is the joint distribution of (X,Θ), then
for any measurable subset A of X .

E[IB(Θ)IA(X)] =
∫
A×Ω

IB(θ) µ(dx× dθ) =
∫
A

∫
B

fX|Θ(x|θ) µΘ(dθ) ν(dx)

=
∫
A

[
∫
B

fX|Θ(x|θ)
m(x)

µΘ(dθ)][
∫

Ω

fX|Θ(x|t) µΘ(dt)] ν(dx)

=
∫

Ω

∫
A

[
∫
B

fX|Θ(x|θ)
m(x)

µΘ(dθ)]fX|Θ(x|t) ν(dx)µΘ(dt)

=
∫
A×Ω

P (B|x) µ(dx× dθ) = E[P (B|X)IA(X)]
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We now summarize the properties of conditional expectation.

Theorem. Let Y, Y1, Y2, · · · have finite absolute mean on (S,A, µ) and let a1, a2 ∈ R. In addition, let B
and C be σ-algebras contained in A. Then

(a) If Z is any version of E[Y |C], then EZ = EY . (E[E[Y |C]] = EY ).
(b) If Y is C measurable, then E[Y |C] = Y , a.s.
(c) (Linearity) E[a1Y1 + a2Y2|C] = a1E[Y1|C] + a2E[Y2|C], a.s.
(d) (Positivity) If Y ≥ 0, then E[Y |C] ≥ 0.
(e) (cMON) If Yn ↑ Y , then E[Yn|C] ↑ E[Y |C], a.s.
(f) (cFATOU) If Yn ≥ 0, then E[lim infn→∞ Yn|C] ≤ lim infn→∞E[Yn|C].
(g) (cDOM) If limn→∞ Yn(s) = Y (s), a.s., if |Yn(s)| ≤ V (s) for all n, and if EV <∞, then

lim
n→∞

E[Yn|C] = E[Y |C],

almost surely.
(h) (cJENSEN) If c : R → R is convex, and E|c(Y )| <∞, then

E[c(Y )|C] ≥ c(E[Y |C]),

almost surely. In particular,
(i) (Contraction) ||E[Y |C]||p ≤ ||Y ||p for p ≥ 1.
(j) (Tower Property) If B ⊂ C, then

E[E[Y |C]|B] = E[Y |B],

almost surely.
(k) (cCONSTANTS) If Z is C-measurable, then

E[ZY |C] = ZE[Y |C]

holds almost surely whenever any one of the following conditions hold:
(i) Z is bounded.
(ii) E|Y |p <∞ and E|Z|q <∞. 1

p + 1
q = 1, p > 1.

(iii) Y,Z ≥ 0, EY <∞, and E[Y Z] <∞.
(l) (Role of Independence) If B is independent of σ(σ(Y ), C), then

E[Y |σ(C,B)] = E[Y |C],

almost surely. In particular,
(m) if Y is independent of B, then E[Y |B] = EY .

Exercise. Let C be a sub-σ-field and let EY 2 <∞, then

Var(Y ) = E[Var(Y |C)] + Var(E[Y |C]).
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Definition. On a probability space (S,A, P r), let C1, C2,B be sub-σ-fields of A. Then the σ-fields C1

and C2 are conditionally independent given B if

Pr(A1 ∩A2|B) = Pr(A1|B)Pr(A2|B),

for Ai ∈ Ci, i = 1, 2.

Proposition. Let B, C and D be σ-fields. Then
(a) If B and C are conditionally independent given D, then B and σ(C,D) are conditionally independent

given D.
(b) Let B1 and C1 be sub-σ-fields of B and C, respectively. Suppose that B and C are independent. Then

B and C are conditionally independent given σ(B1, C1)
(c) Let B ⊂ C. Then C and D are conditionally independent given B if and only if, for every D ∈ D,

Pr(D|B) = Pr(D|C).

2.4 Modes of Convergence

Let X,X1, X2, · · · be a sequence of random variables taking values in a metric space X with metric d.

1. We say that Xn converges to X almost surely (Xn →a.s. X) if

lim
n→∞

Xn = X a.s..

2. We say that Xn converges to X in probability (Xn →P X) if, for every ε > 0,

lim
n→∞

Pr{d(Xn, X) > ε} = 0.

3. We say that Xn converges toX in distribution (Xn →D X) if, for every bounded continuous f : X → R.

lim
n→∞

Ef(Xn) = Ef(X).

4. We say that Xn converges to X in Lp, p > 0, (Xn →Lp

X) if,

lim
n→∞

E[d(Xn, X)p] = 0.

Note that Xn →a.s. X or Xn →Lp

X implies Xn →P X which in turn implies Xn →D X. If Xn →D c,
then Xn →P c

Exercise. Let Xn → X under one of the first three modes of convergence given above and let g be a
continuous, then g(Xn) converges to g(X) under that same mode of convergence.

The converse of these statements requires an additional concept.

Definition. A collection of real-valued random variables {Xγ : γ ∈ Γ} is uniformly integrable if

1. supγ E|Xγ | <∞, and
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2. for every ε > 0, there exists a δ > 0 such that for every γ,

P (A) < δ implies |E[XγIA]| < ε.

Theorem. The following are equivalent:

1. {Xγ : γ ∈ Γ} is uniformly integrable.

2. limn→∞ supγ∈ΓE[|Xγ |I{|Xγ |>n}] = 0.

3. limn→∞ supγ∈ΓE[|Xγ | −min{n, |Xγ |}] = 0.

4. There exists an increasing convex function c : [0,∞) → R such that limx→∞ c(x)/x = ∞, and

sup
γ∈Γ

E[c(|Xγ |)] <∞.

Theorem. If Xn →D X and {Xn;n ≥ 1} is uniformly integrable, then limn→∞EXn = EX.
Conversely, if the Xn are integrable, Xn →D X and limn→∞E|Xn| = E|X|, then {Xn;n ≥ 1} is

uniformly integrable.

The following will be useful in establishing the “delta method”.

Theorem. (Slutsky) Let X,X1, X2, · · · , Y1, Y2, · · · be random variables and let c ∈ R. Suppose that
Xn →D X and Yn →P c. Then

1. Xn + Yn →D X + c.

2. YnXn →D cX.

3. Xn/Yn →D X/c provided c 6= 0.

Convergence in distribution depends only on the laws Pn of Xn. Thus, we can write

lim
n→∞

∫
f dPn =

∫
f dP,

where P is the law for X. Under these circumstances, we say Pn converges weakly to P and write Pn →W P .

Theorem. (Portmanteau) The following statements are equivalent for a sequence {Pn : n ≥ 1} of
probability measures on a metric space.

1. Pn →W P.

2. limn→∞
∫
f dPn =

∫
f dP.

3. lim supn→∞ Pn(F ) ≤ P (F ) for all closed sets F .

4. lim infn→∞ Pn(G) ≥ P (G) for all open sets G.
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5. limn→∞ Pn(A) = P (A) for all P -continuity sets, i.e. sets A so that P (∂A) = 0.

Suppose Pn and P are absolutely continuous with respect to some measure ν and write fn = dPn/dν,
f = dP/dν. If fn → f a.e. ν, then by Fatou’s lemma,

lim inf
n→∞

Pn(G) = lim inf
n→∞

∫
G

fn dν ≥
∫
G

f dν = P (G).

Thus, convergence of the densities implies convergence of the distributions.

On a separable metric space, weak convergence is a metric convergence based on the Prohorov metric,
defined by

ρ(P,Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε for all closed sets F}.

Here F ε = {x : d(x, y) < ε for some y ∈ F}. The statements on weak convergence are equivalent to

lim
n→∞

ρ(Pn, P ) = 0.

For probability distributions on Rd, we can associate to Pn and P its cumulative distribution functions
Fn and F , and characteristic functions φn(s) =

∫
ei〈s,x〉 dPn and φ(s) =

∫
ei〈s,x〉 dP . Then the statements

above are equivalent to

1. limn→∞ Fn(x) = F (x) for all continuity points x of F .

2. (Lévy-Cramér continuity theorem) limn→∞ φn(s) = φ(s) for all s.

3. (Cramér-Wold device) 〈c,Xn〉 →D 〈c,X〉 for all c ∈ Rd

In Rd, the Prohorov metric is equivalent to the Lévy metric,

ρL(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε},

for cumulative distribution functions F and G.

2.5 Limit Theorems

Theorem. Let X1, X2, · · · and Y be Rd random variables satisfying

an(Xn − c) →D Y,

where {an : n ≥ 1} ⊂ R, c ⊂ Rd with limn→∞ an = ∞. Let g : Rd → R. Then,

(i) If g is differentiable at c, then

an(g(Xn)− g(c)) →D ∇g(c)Y T .
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(ii) If g ∈ Cm in a neighborhood of c, with all k-th order derivatives vanishing at c, 1 ≤ k < m. Then,

amn (g(Xn)− g(c)) →D
∑

i1,···,im

∂mg

∂xi1 · · · ∂xim
(c)Yi1 · · ·Yim .

Proof. (i). By Slutsky’s theorem, Xn − c→D 0 and hence Xn − c→P 0.
Let

Zn = an(g(Xn)− g(c))− an∇g(c)(Xn − c)T .

If we show that Zn →P 0, then the hypothesis, and Slutsky’s theorem imply the theorem.
Because g is differentiable at c, given η > 0, we can find δη > 0 so that

|g(x)− g(c)−∇g(c)(x− c)T | ≤ η|x− c|

whenever |x− c| ≤ δη. Fix ε, and note that

Pr{|Zn| ≥ ε} ≤ Pr{|Zn| ≥ ε, |Xn − c| ≥ δη}+ Pr{|Zn| ≥ ε, |Xn − c| ≤ δη}
≤ Pr{|Xn − c| ≥ δη}+ Pr{an|Xn − c| ≥ ε/η}.

The first term goes to zero as n→∞. By the Portmanteau Theorem,

lim sup
n→∞

Pr{|Zn| ≥ ε} ≤ lim sup
n→∞

Pr{an|Xn − c| ≥ ε/η} ≤ Pr{|Y | ≥ ε/η}.

Because η is arbitrary, the theorem is complete.

Part (ii) is similar and is left as an exercise.

Corollary. (Delta method) Assume the conditions of the theorem above. If Y has a N(0,Σ) distri-
bution, then

an(g(Xn)− g(c)) →D W.

W is N(0,∇g(c)Σ∇g(c)T ).

Examples. If
√
n(Xn − c) →D Z, Z is a standard normal, then for c 6= 0

√
n(X2

n − c2) →D W.

W is N(0, 4c2). For c = 0, √
nX2

n →D χ2
1,

a chi-square random variable with one degree of freedom.

The most general central limit theorem for independent random variables is due to Lindeberg.

Theorem. Let {Xnj : j = 1, · · · , kn} be independent mean zero random variables with kn → ∞ as
n→∞ and 0 < σn = Var(

∑kn

j=1Xnj) <∞, and
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If, for any ε > 0,

lim
n→∞

1
σ2
n

kn∑
j=1

E[X2
njI{|Xnj |>εσn}] = 0,

then
1
σn

kn∑
j=1

Xnj

converges in distribution to a standard normal random variable.

Exercises.

1. Show that the Liapounov condition below implies the Lindeberg condition.

lim
n→∞

1
σ2+δ
n

kn∑
j=1

E[|Xnj |2+δ] = 0,

for some δ > 0.

2. Let {Xi : i ≥ 1} be Bernoulli random variables. EXi = pi. If σ2
n =

∑n
i=1 pi(1 − pi) → ∞ as n → ∞,

then
1
σn

n∑
i=1

(Xi − pi) →D Z

as n→∞ with Z a standard normal random variable.

3. Let {Xi : i ≥ 1} be i.i.d Rd-valued random variables with mean µ and variance Σ = Var(X1), then

1√
n

n∑
i=1

(Xi − µ) →D W,

with W a N(0,Σ) random variable.

4. In Exercise 2, let d = 1, X̄n and Sn−1, be respectively, the sample mean and standard deviation of the
first n observations, then

X̄n − µ

Sn−1/
√
n
→D Z

as n→∞ with Z a standard normal random variable.

2.6 Exponential and Location-Scale families

Defnition. A parametric family of distributions {Pθ : θ ∈ Ω} dominated by a σ-finite measure ν on (X ,B)
is called an exponential family if

fX|Θ(x|θ) =
dPθ
dν

(θ) = c(θ)h(x) exp{
k∑
i=1

πi(θ)ti(x)} = c(θ)h(x)e〈π(θ),t(x)〉.
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In particular, there exists a dominating measure (e.g. dλ = h dν) such that fX|Θ(x|θ) > 0 for all
(x, θ) ∈ supp(λ)×Ω. We can use this, for example, to show that the choice of Pθ, a U(0, θ)-random variable,
does not give an exponential family.

This choice for the representation is not unique. The transformation π̃(θ) = π(θ)D and t̃(x) = t(x)(DT )−1

for a nonsingular matrix D gives another representation. Also, if ν̃ << ν then we can use ν̃ as the dominating
measure.

Note that
c(θ) = (

∫
X
h(x)e〈π(x),t(x)〉 dν(x))−1.

For j = 1, 2, let Xj be independent exponential families with parameter set Ωj , and dominating measure
νj , then the pair (X1, X2) is an an exponential family with parameter set (Ω1,Ω2) and dominating measure
ν1 × ν2.

Consider the reparameterization π = π(θ), then

f̃X|Π(x|π) = c̃(π)h(x)e〈π,t(x)〉.

We call the vector Π = π(Θ) the natural parameter and

Γ = {π ∈ Rk :
∫
X
h(x)e〈π,t(x)〉ν(dx) <∞}

is called the natural parameter space.

Examples.

1. Let {Pθ : θ ∈ (0, 1)} be Bin(n, θ) and let ν be counting measure on {0, 1, · · · , n}, then

fX|Θ(x|θ) = (1− θ)n
(
n

x

)
exp{x log

θ

1− θ
}.

Thus,

c(θ) = (1− θ)n, h(x) =
(
n

x

)
, t(x) = x, π(θ) = log

θ

1− θ
.

The natural parameter is π = log θ
1−θ . We can recover θ via θ = eπ/(1 + eπ).

2. Let {Pθ : θ = (µ, σ) ∈ R×R+} be the distribution of X = (X1, · · · , Xn), an i.i.d sequence of N(µ, σ2)
random variables. Let ν be n-dimensional Lebesgue measure. Then,

fX|Θ(x|θ) =
1

(2πσ2)n/2
exp{− 1

2σ2

n∑
i=1

(xi − µ)2}

=
1

(2π)n/2
σ−n exp{nµ

2

2σ2
} exp{− 1

2σ2

n∑
i=1

x2
i +

µ

σ2
nx̄}.
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Thus,

c(θ) = σ−n exp{nµ
2

2σ2
}, h(x) =

1
(2π)n/2

, t(x) = (nx̄,
n∑
i=1

x2
i ), π(x) = (

µ

σ2
,− 1

2σ2
).

An exponential family of distributions is called degenerate if the image of the natural parameterization
is almost surely contained in a lower dimensional hyperplane of Rk. In other words, there is a vector α and
a scalar r so that Pθ{〈, αX〉 = r} = 1 for all θ.

For X distributed Multk(θ1, · · · , θk),Ω = {θ ∈ Rk : θi > 0,
∑k
i=1 θi = 1}. Then,

c(θ) = 1, h(x) =
(

n

x1, · · · , xk

)
, t(x) = x

The natural parameter is π(θ) = (log(θ1), · · · , log(θk)).

This family is degenerate because Pr{〈1, X〉 = n}. We can choose the reparameterization

π̃(θ) = (log(θ1/θk), · · · , log(θk−1/θk))

with
t̃(x) = (x1, · · · , xk−1), c̃(θ) = θnk .

This gives a nondegenerate exponential family.

Formulas for exponential families often require this non-degeneracy. Thus, we will often make a linear
transformation to remove this degeneracy.

Definition. (Location-scale families.) Let Pr be a probability measure on (Rd,B(Rd)) and let Md

be the collection of all d× d symmetric positive definite matrices. Set

Pr(µ,Σ)(B) = Pr((B − µ)Σ−1/2), B ∈ B(Rd).

Then, the collection
{Pr(µ,Σ)(B) : µ ∈ Rd,Σ ∈Md}

is called a location-scale family.

A location family is obtained by restricting the choice of matrices to the identity matrix. A scale family is
obtained by restricting the choice of vectors to µ = 0. The normal distributions on Rd form a location-scale
family. The uniform distributions on (0, θ) form a location family.
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3 Sufficiency

We begin with some notation.

Denote the underlying probability space by (S,A, µ). We will often write Pr(A) for µ(A).
We refer to a measurable mapping X : (S,A) → (X ,B) as the data. X is called the sample sapce.
We begin with a parametric family of distributions P0 of X . The parameter Θ is a mapping from the

parameter space (Ω, τ) to P0. Preferably, this mapping will have good continuity properties.
The distribution of X under the image of θ is denoted by

P ′θ{X ∈ B} = Pr{X ∈ B|Θ = θ} = Pθ(B), B ∈ B.

Thus, if Θ has distribution µΘ,

Pr{X ∈ B,Θ ∈ D} =
∫
D

Pθ(B) µΘ(dθ).

For example, let θ = (α, β), α > 0, β > 0. Under the distribution determined by θ, X is a sequence of n
independent Beta(α, β)-random variables. Pick B ∈ B([0, 1]n). Then

Pθ(B) =
∫
B

n∏
i=1

Γ(α+ β)
Γ(α)Γ(β)

xα−1
i (1− xi)β−1 dx.

Let C be a sigma field on T that contains singletons, then T : (X ,B) → (T , C) is a statistic and T (X) is
called a random quantity. We write

Pθ,T (C) = P ′θ{T (X) ∈ C} = P ′θ{T ∈ C}.

3.1 Basic Notions

Definition. Let P0 be a parametric family of distributions on (X ,B). Let (Ω, τ) be the parameter space
and let Θ : Ω → P0 be the parameter. Let T : X → T be a statistic.

1. T is sufficient in the classical sense if the conditional distribution of X given T (X) does not depend
on θ.

2. T is sufficient in the Bayesian sense if, for every prior µΘ, there exists versions of the posteriors µΘ|X
and µΘ|T such that for every B ∈ τ ,

µΘ|X(B|x) = µΘ|T (B|T (x)) a.s. µX ,

where µX is the marginal distribution of X.

If T is sufficient in the classical sense, then there exists a function r : B × T → [0, 1] such that
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1. r(·|t) is a probability on X for every t ∈ T .

2. r(B|·) is measurable on T for every B ∈ B.

3. For every θ ∈ Ω and every B ∈ B,

Pθ{B|T = t} = r(B|t) a.e. Pθ,T .

Thus, given T = t, one can generate the conditional ditribution of X without any knowledge of the
parameter θ.

Example. Let X be n independent Ber(θ) random variables and set T (x) =
∑n
i=1 xi. Then

P ′θ{X = x|T (X) = t} =
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
(
n

t

)−1

.

Thus, T is sufficient in the classical sense and r(·|t) has a uniform distribution.

By Bayes’ formula, the Radon-Nikodym derivative,

dµΘ|X

dµΘ
(x|θ) =

θ
∑n

i=1
xi(1− θ)n−

∑n

i=1
xi∫

ψ
∑n

i=1
xi(1− ψ)n−

∑n

i=1
xi µΘ(dψ)

.

Given Θ = θ, T (X) is Bin(n, θ), thus

dµΘ|T

dµΘ
(x|t) =

(
n
t

)
θt(1− θ)n−t∫ (

n
t

)
ψt(1− ψ)n−t µΘ(dψ)

.

Thus, T is sufficient in the Bayesian sense.

Checking the two basic properties of conditional expectation, we have the following lemma.

Lemma. A statistic T is sufficient in the Bayesian sense if and only if, for every prior µΘ, there exists
a version of the posterior distribution given X, µΘ|X such that for all B ∈ τ , µθ|X(B|·) is σ(T )-measurable,
i.e. µθ|X(B|x) is a function of T .

Exercise. If X = (X1, · · · , Xn) are exchangeable, then the order statistics (X(1), ·, X(n)) are sufficient.

The two notions of sufficiency are quite similar as the following theorem demonstrates.

Theorem.

1. If T is sufficient in the classical sense, then T is sufficient in the Bayesian sense.

2. Let T be sufficient in the Bayesian sense. If Pθ << ν for all θ and some σ finite measure ν, then T is
sufficient in the classical sense.
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Proof. Let r be as desribed above and let µΘ be a prior for Θ. Then,

µX|T (B|T = t) =
∫

Ω

Pθ(B|T = t) µΘ|T (dθ|t) =
∫

Ω

r(B|t) µΘ|T (dθ|t) = r(B|t) = µX|T,Θ(B|T = t,Θ = θ),

where µΘ|T is the posterior distribution of Θ given T . Thus, the conditional distribution of X given (Θ, T )
is the conditional distribution of X given T . Consequently, X and Θ are conditionally independent given T
and

µΘ|T,X = µΘ|T .

Because T is a function of X, we always have

µΘ|T,X = µΘ|X

and T is sufficient in the Bayesian sense.
Part 2 requires the following lemma.

Lemma. let ν be a σ-finite measure dominating Pθ for each θ ∈ Ω. If T is sufficient in the Bayesian
sense, then there exists a probability measure ν∗ such that Pθ << ν∗ << ν for all θ and

fX|Θ(x|θ) =
dPθ
dν∗

(x) = h(θ, T (x))

for some measurable function h : Ω× T → R.
Proof. We can choose Ων = {θi : i ≥ 1} and {ci : i ≥ 1} so that ci ≥ 0,

∑∞
i=1 ci = 1 and for every θ ∈ Ω,

Pθ << ν∗ =
∞∑
i=1

ciPθi
.

For θ ∈ Ω\Ων specify the prior distribution

Pr{Θ = θ} =
1
2
, P r{Θ = θi} =

ci
2
.

Then,

Pr{Θ = θ|X = x} =
Pr{X = x|Θ = θ}Pr{Θ = θ}

Pr{X = x}

=
fX|Θ(x|θ)

fX|Θ(x|θ) +
∑∞
i=1 cifX|Θ(x|θi)

= (1 +
∑∞
i=1 cifX|Θ(x|θi)
fX|Θ(x|θ)

)−1.

Because T is sufficient in the Bayesian sense, Pr{Θ = θ|X = x} is, for each θ, a function of T (x). Thus,
we write

h(θ, T (x)) =
fX|Θ(x|θ)∑∞

i=1 cifX|Θ(x|θi)
=
dPθ
dν

(x)/
dν∗

dν
(x) =

dPθ
dν

(x).
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If θ ∈ Ων , use the prior Pr{Θ = θi} = ci and repeat the steps above.

Proof. (Part 2 of the theorem) Write r̃(B|t) = ν∗(X ∈ B|T = t) and set ν∗T (C) = ν∗{T ∈ C}. Then

ν∗(T−1(C) ∩B) =
∫
IC(T (x))IB(x) ν∗(dx) =

∫
C

r̃(B|t) ν∗T (dt).

Thus by the standard machine, for every integrable g : T → R,∫
g(T (x))IB(x) ν∗(dx) =

∫
g(t)r̃(B|t) ν∗T (dt).

Claim. For all θ, r̃(B|t) = Pθ{X ∈ B|T = t}
Note that Pθ{X ∈ B|T = t} is characterized by satisfying

1. It is a function m : T → [0, 1].

2. Eθ[IB(X)IC(T (X))] = Eθ[m(T (X))IC(T (X))].

Clearly, r̃(B|t) satisfies 1. By the lemma,

dPθ,T
dν∗T

(t) = h(θ, t).

(Pθ,T (B) = Pθ{T (X) ∈ B} =
∫
IB(T (x))h(θ, T (x)) ν∗(dx) =

∫
IB(t)h(θ, t) ν∗T (dt))

Thus,∫
C

r̃(B|t) Pθ,T (dt) =
∫
IC(t)r̃(B|t)h(θ, t) ν∗T (dt) =

∫
IB(x)IC(T (x))h(θ, T (x)) ν∗(dx)

=
∫
IB(x)IC(T (x)) Pθ(dx) = Eθ[IB(X)IC(T (X))].

This gives the claim.

3.2 Fisher-Neyman Factorization Theorem

If all the conditional distributions are absolutely continuous with respect to a single σ-finite measure, then
the two senses of sufficiency agree. In this circumstance, the Fisher-Neyman factorization theorem gives a
simple characterization of sufficiency.

Theorem. Let {Pθ : θ ∈ Ω} be a parametric family such that Pθ << ν for all θ. Write

dPθ
dν

(x) = fX|Θ(x|θ).

Then T is sufficient if and only if there exists functions m1 and m2 such that

fX|Θ(x|θ) = m1(x)m2(T (x), θ).
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Proof. By the theorem above, it suffices to prove this theorem for sufficiency in the Bayesian sense.
Write fX|Θ(x|θ) = m1(x)m2(T (x), θ) and let µΘ be a prior for Θ. Bayes’ theorem states that the posterior

distribution of Θ is absolutely continuous with respect to the prior with Radon-Nikodym derivative

dµΘ|X

dµΘ
(θ|x) =

m1(x)m2(T (x), θ)∫
Ω
m1(x)m2(T (x), ψ) µΘ(dψ)

=
m2(T (x), θ)∫

Ω
m2(T (x), ψ) µΘ(dψ)

.

This is a function of T (x). Thus, T is sufficient.

Now, assume that T is sufficient. Then there exists a measure ν∗ such that

1. Pθ << ν∗ for all θ.

2. dPθ/dν∗(x) = h(θ, T (x)) for some measurable h.

3. ν∗ << ν.

Therefore,

fX|Θ(x|θ) =
dPθ
dν∗

(x)
dν∗

dν
(x) = h(θ, T (x))

dν∗

dν
(x).

Now set m1 = dν∗/dν and m2 = h.

Example. (truncation families) Let φ be a non-negative Borel function on (R,B(R)) such that for any
α and β, we have

∫ β
α
φ(x) dx < ∞ . Use the parameter θ = (α, β), Ω = {(α, β) ∈ R2 : α < β}, and set the

densities with respect to Lebesgue measure

fX|Θ(x|θ) = c(θ)φ(x)I(α,β)(x)

with c(θ) = (
∫ β
α
φ(x) dx)−1.

The joint density function of n independent identically distributed random variables from this truncation
family is

n∏
i=1

fX|Θ(xi|θ) = c(θ)n
n∏
i=1

I(α,β)(xi)
n∏
i=1

φ(xi).

= c(θ)nI(α,∞)(x(1))I(−∞,β)(x(n))
n∏
i=1

φ(xi)

Write this asm1(x)m2(T (x), θ) withm1(x) =
∏n
i=1 φ(xi). andm2(T (x), θ) = c(θ)nI(α,∞)(x(1))I(−∞,β)(x(n)),

T (x) = (x(1), x(n)). Thus, the minimum and maximum are sufficient statistics.

Lemma. Assume the conditions of the factorization theorem and assume that T : X → T is sufficient.
Then there exists a measure νT on (T , C) such that Pθ,T << νT and dPθ,T /dνT = m2(t, θ).

Proof. Define ν∗ are before, then Pθ << ν∗ for each θ and

dPθ
dν∗

(x) =
fX|Θ(x|θ)∑∞

i=1 cifX|Θ(x|θi)
=

m2(T (x), θ)∑∞
i=1 cim2(T (x), θi)

.
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Therefore,

Pθ,T (B) =
∫
T−1(B)

dPθ
dν∗

(x) ν∗(dx)

=
∫
T−1(B)

m2(T (x), θ)∑∞
i=1 cim2(T (x), θi)

ν∗(dx)

=
∫
B

m2(t, θ)∑∞
i=1 cim2(t, θi)

dν∗T (x)

with ν∗T (B) = ν∗{T ∈ B}. Now, set dνT /dν
∗
T (t) = (

∑∞
i=1 cim2(t, θi))−1 to complete the proof.

Example. (exponential families) By the factorization theorem, for densities

fX|Θ(x|θ) =
dPθ
dν

(x) = c(θ)h(x)e〈π(θ),t(x)〉,

we have that t is a sufficient statistic, sometimes called the natural sufficient statistic.
Note that t(X) is an exponential family. We will sometimes work in the sufficient statistic space. In

this case, the parameter is the natural parameter which we now write as Ω. The reference measure is νT
described in the lemma above. The density is

fT |Θ(t|θ) =
dPT,θ
dνT

(x) = c(θ)e〈θ,t〉,

3.3 Regularity Properties of Exponential Families

Theorem. The natural parameter space Ω of an exponential family is convex and 1/c(θ) is convex.

Proof. Working with the sufficient statistics space, write

1
c(θ)

=
∫
e〈θ,t〉νT (dt).

Choose θ1, θ2 ∈ Ω and α ∈ (0, 1). Then, by the convexity of the exponential, we have that

1
c(αθ1 + (1− α)θ2)

=
∫
e〈(αθ1+(1−α)θ2),t〉νT (dt)

=
∫

(αe〈θ1,t〉 + (1− α)e〈θ2,t〉)νT (dt)

=
α

c(θ1)
+

1− α

c(θ2)
<∞.

Moreover, if
∫
|φ(t)|e〈θ,t〉νT (dt) <∞ for θ in the interior of the natural parameter space for φ : T → R,

then
f(z) =

∫
φ(t)e〈t,z〉νT (dt)
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is an analytic function of z in the region for which the real part of z is in the interior of the natural parameter
space. Consequently,

∂

∂zi
f(z) =

∫
tiφ(t)e〈z,t〉νT (dt)

Taking φ(θ) = 1, we have

EθTi = c(θ)
∂

∂θi

1
c(θ)

= − ∂

∂θi
log c(θ).

More generally, if ` = `1 + · · ·+ `k,

Eθ[
k∏
i=1

T `
i

i ] = c(θ)
∂`

∂θ`11 · · · ∂θ`kk

1
c(θ)

.

For example,

Cov(Ti, Tj) = − ∂2

∂θi∂θj
log c(θ).

Examples.

1. The family Exp(ψ) has densities fX|Ψ(x|ψ) = ψe−ψx with respect to Lebesgue measure. Thus, the
natural parameter, θ = −ψ ∈ (−∞, 0) , c(θ) = −1/θ, a convex function.

EθT =
∂

∂θ
log(−θ) =

1
−θ

, Var(T ) =
∂2

∂θ2
log(−θ) =

1
θ2
.

2. For the sum of n-independent N(µ, σ2) random variables, the natural parameter θ = (µ/σ2,−1/2σ2),
and the natural sufficient statistic T (x) = (nx̄,

∑n
i=1 x

2
i ). Thus,

log c(θ) =
n

2
log(−2θ2) +

n

4
θ21
θ2
,

Eθ[nX̄] = − ∂

∂θ1
log c(θ) = −n

2
θ1
θ2

= nµ, Eθ[
n∑
i=1

X2
i ] = − ∂

∂θ2
log c(θ) = − n

2θ2
+
n

4
θ21
θ22

= n(σ2 + µ2),

Cov(nX̄,
n∑
i=1

X2
i ) = − ∂

∂θ2

∂

∂θ1
log c(θ) = − ∂

∂θ2

n

2
θ1
θ2

=
n

2
θ1
θ22

= 2nµσ2.

Definition. Let P0 be a family of distributions on X . A second family of distributions P∗ is called a
conjugate family provided that any choice of prior µΘ ∈ P∗ implies that the posterior µΘ|X ∈ P∗.

Exercise. Let X = (X1, · · · , Xn) be independent Ber(θ) random variables and set T (X) =
∑n
i=1Xi.

Then the beta family of distributions forms a natural conjugate pair.
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This fact, in the case of integer parameters, is a consequence of the following theorem.

Theorem. Suppose, for any choice n of sample size, there exists a natural number k and a sufficient
statistic Tn whose range in contained in Rk, functions m1,n and m2,n such that

fX1,···,Xn|Θ(x|θ) = m1,n(x1, · · · , xn)m2,n(Tn(x1, · · · , xn), θ).

In addition, assume that for all n and all t ∈ T ,

0 < c(t, n) =
∫

Ω

m2,n(t, θ) λ(dθ) <∞.

Then the family

P∗ = {m2,n(t, ·)
c(t, n)

: t ∈ T , n = 1, 2, · · ·}

is a conjugate family.

We can apply the computational ideas above to computing posterior distributions.

Theorem.Let X = (X1, · · · , Xn) be i.i.d. given Θ = θ ∈ Rk with density c(θ) exp(〈θ, T (x)〉). Choose
a > 0 and b ∈ Rk so that the prior for Θ is proportional to c(θ)a exp(〈θ, b〉). Write the predictive density of
X, fX(x) = g(t1, · · · , tk), where ti =

∑n
j=1 Ti(xj). Set ` = `1 + · · ·+ `k, then

E[
k∏
i=1

Θ`i
i |X = x] =

1
fX(x)

∂`

∂t`11 · · · ∂t`kk
g(t1, · · · , tk).

3.4 Minimal and Complete Sufficiency

The entire data is always a sufficient statistic. Here we look for a sufficient statistics T that minimizes σ(T ).

Definition. A sufficient statistic T : X → T is called minimal sufficient if for every sufficient statistic
U : X → U , there is a measurable function g : U → T such that T = g(U), a.s. Pθ for all θ.

Theorem. let ν be σ-finite and suppose that there exist versions of dPθ/dν = fX|Θ(·|θ) for every θ and
a measurable function T : X → T that is constant on the sets

D(x) = {y ∈ X : fX|Θ(y|θ) = fX|Θ(x|θ)h(x, y) for all θ and some h(x, y) > 0},

then T is a minimal sufficient statistic.

Proof. Note that the sets D(x) partition X . To show that T is sufficient, choose a prior µΘ. The density
of the posterior using Bayes’ theorem.

dµΘ|X

dµΘ
(θ|x) =

fX|Θ(x|θ)∫
fX|Θ(x|ψ) µΘ(dψ)

=
h(x, y)fX|Θ(x|θ)∫

h(x, y)fX|Θ(x|ψ) µΘ(dψ)

=
dµΘ|X

dµΘ
(θ|y)
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provided y ∈ D(x). Hence, the posterior is a function of T (x) and T is sufficient.

To prove that T is minimal, choose a sufficient statistic U . We will show that U(y) = U(x) implies that
y ∈ D(x) and hence that T is a function of U . Use the Fisher-Neyman factorization theorem to write

fX|Θ(x|θ) = m1(x)m2(U(x), θ).

Because, for each θ, m1 > 0 with Pθ-probability 1, we can choose a version of m1 that is positive for all x.
If U(x) = U(y), then

fX|Θ(x|θ) = fX|Θ(y|θ)m1(y)
m2(x)

for all θ. Thus, we can choose h(x, y) = m1(y)/m2(x) to place y ∈ D(x).

Examples.

1. Let X1, · · · , Xn be independent Ber(θ) random variables. Then

fX|Θ(x|θ) = θ
∑n

i=1
xi(1− θ)n−

∑n

i=1
xi .

So, the ratio
fX|Θ(y|θ)
fX|Θ(x|θ)

= (
θ

1− θ
)
∑n

i=1
yi−
∑n

i=1
xi .

Thus, h(x, y) = 1 and D(x) = {y ∈ {0, 1}n :
∑n
i=1 yi =

∑n
i=1 xi}. This gives that T (x) =

∑n
i=1 xi is a

minimal sufficient statistic.

2. Let X1, · · · , Xn be independent U(0, θ) random variables. Then

fX|Θ(x|θ) = θ−nI[0,θ](max
i
xi).

Now suppose that, for all θ

θ−nI[0,θ](max
i
xi) = h(x, y)θ−nI[0,θ](max

i
yi).

Then maxi xi = maxi yi and h(x, y) = 1 and D(x) = {y ∈ Rn+ : maxi xi = maxi yi}. Consequently,
T (x) = maxi xi is a minimal sufficient statistic.

Definition. A statistic T is (boundedly) complete if, for every (bounded) measurable function g,

Eθ[g(T )] = 0 for all θ ∈ Ω implies g(T ) = 0, a.s. Pθ for all θ.

Examples.
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1. Let X1, · · · , Xn be independent Ber(θ) and let T denote the sum. Choose g so that Eθ[g(T )] = 0 for
all θ. Then

0 = Eθ[g(T )] =
n∑
i=1

g(i)
(
n

i

)
θi(1− θ)n−i

= (1− θ)n
n∑
i=1

g(i)
(
n

i

)
(

θ

1− θ
)i

This polynomial in θ/(1 − θ) must have each of its coefficients equal to zero. Thus, g(i) = 0 for all i
in the range of T . Hence, T is complete.

2. Let X1, · · · , Xn be independent U(0, θ) and let T denote the maximum. Choose g so that Eθ[g(T )] = 0
for all θ. Then

0 = Eθ[g(T )] =
∫ θ

0

g(t)ntn−1θn dt.

Thus, the integrand and hence g(t) = 0 a.e. and T is complete.

Theorem. If the natural parameter space Ω of an exponential family contains an open set in Rk, then
the natural sufficient statistic is complete.

Proof. Let T (X) have density c(θ) exp〈θ, t〉 with respect to a measure νT . Let g be a function such that

0 = Eθ[g(T )] =
∫
g(t)c(θ) exp〈θ, t〉 νT (dt).

Thus, for each θ ∫
g+(t) exp〈θ, t〉 νT (dt) =

∫
g−(t) exp〈θ, t〉 νT (dt).

Fix θ0 in the interior of the natural parameter space and let Z(θ0) be the common value of the integrals
above. Define two probability measures

P+(A) =
1

Z(θ0)

∫
g+(t) exp〈θ, t〉 νT (dt)

P−(A) =
1

Z(θ0)

∫
g−(t) exp〈θ, t〉 νT (dt).

Now the equality above can be written∫
exp〈(θ − θ0), t〉 P+(dt) =

∫
exp〈(θ − θ0), t〉 P−(dt).

Thus, the Laplace transforms of P+ and P− agree on an open set, and hence P+ = P−. Consequently,
g+ = g− a.s. νT and Pθ{g(T ) = 0} = 1.
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Thus, the sufficient statistics from normal, exponential, Poisson, Beta, and binomial distributions are
complete.

Theorem. (Bahadur) If U is a finite dimensional boundedly complete and sufficient statistic, then it
is minimal sufficient.

Proof. Let T be another sufficient statistic. Write U = (U1, · · · , Uk) and set Vi(u) = (1 + exp(ui))−1.
Thus, V is a bounded, one-to-one function of u. Define

Hi(t) = Eθ[Vi(U)|T = t], Li(u) = Eθ[Hi(T )|U = u].

Because U and T are sufficient, these conditional means do not depend on θ. Because V is bounded, so are
H and L. Note that by the tower property,

Eθ[Vi(U)] = Eθ[Eθ[Vi(U)|T ]] = Eθ[Hi(T )] = Eθ[Eθ[Hi(T )|U ]] = Eθ[Li(U)].

Thus, Eθ[Vi(U) − Li(U)] = 0 for all θ. Use the fact that U is boundedly complete to see that Pθ{Vi(U) =
Li(U)} = 1 for all θ.

Now, use the conditional variance formula.

Varθ(Li(U)) = Eθ[Varθ(Li(U))|T ] + Varθ(Hi(T )), Varθ(Hi(T )) = Eθ[Varθ(Hi(T ))|U ] + Varθ(Li(U)).

Add these equations and simplify to obtain

0 = Eθ[Varθ(Li(U))|T ] + Eθ[Varθ(Hi(U))|T ].

Because conditional variances are non-negative, we have that 0 = Varθ(Li(U)|T ) = Varθ(Vi(U)|T ), a.s. Pθ.
Thus, Vi(U) = Eθ[Vi(U)|T ] = Hi(T ) or Ui = V −1

i (Hi(T )), a.s. Pθ, and U is a function of T . Consequently,
U is minimal sufficient.

3.5 Ancillarity

Definition. A statistic U is called ancillary if the conditional distribution of U is independent of Θ.

Examples.

1. Let X1, X2 be independent N(θ, 1), then X2 −X1 is N(0, 2).

2. Let X1, · · · , Xn be independent observations from a location family, then X(n) −X(1) is ancillary.

3. Let X1, · · · , Xn be independent observations from a scale family, then any function of the random
variables X1/Xn, · · · , Xn−1/Xn is ancillary.

Sometimes a minimal sufficient statistic contains a coordinate that is ancillary. For example, for n i.i.d.
observations X1, · · · , Xn, from a location family take T = (T1, T2) = (maxiXi,maxiXi − miniXi). Then
T is minimal sufficient and T2 is ancillary. In these types of situations, T1 is called conditionally sufficient
given T2.
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Theorem. (Basu) Suppose that T is a boundedly complete sufficient statistic and U is ancillary. Then
U and T are independent given Θ = θ and are marginally independent irrespective of the prior used.

Proof. Let A be a measurable subset of the range of U . Because U is ancillary, P ′θ{U ∈ A} is constant.
Because T is sufficient, P ′θ{U ∈ A|T} is a function of T independent of θ. Note that

Eθ[P ′θ{U ∈ A|T} − P ′θ{U ∈ A}] = 0.

Use the fact that T is boundedly complete to conclude that

P ′θ{U ∈ A|T} = P ′θ{U ∈ A} a.s Pθ.

Now, let B be a measurable subset of the range of T , then

P ′θ{T ∈ B,U ∈ A} = Eθ[Eθ[IB(T (X))IA(U(X))|T (X)]]
= Eθ[IB(T (X))Eθ[IA(U(X))|T (X)]]
= Eθ[IB(T (X))Eθ[IA(U(X))|T (X)]]
= Eθ[IB(T (X))P ′θ{U ∈ A}]
= P ′θ{T ∈ B}P ′θ{U ∈ A}

Let µΘ be a prior for Θ, then

Pr{U(X) ∈ A, T (X) ∈ B} =
∫

Ω

∫
B

Pr{U(X) ∈ A|T (X) = t} PΘ,T (dt)µΘ(dθ)

=
∫

Ω

Pr{U(X) ∈ A} PΘ,T (B)µΘ(dθ) = Pr{U(X) ∈ A}Pr{T (X) ∈ B}

Examples.

1. Let X1, · · · , Xn be independent N(θ, 1). Then X̄ is complete and S2 =
∑n
i=1(Xi − X̄)2/(n − 1) is

ancillary. Thus, they are independent.

2. Let X1, · · · , Xn be independent N(µ, σ2) Then, (X̄, S) is a complete sufficient statistic. Let

U = (
X1 − X̄

S
, · · · , Xn − X̄

S
).

Then U is ancillary and independent of (X̄, S). The distribution of U is uniform on a sphere of radius
1 in an n− 1 dimensional hyperplane.

3. Conditionin on an ancillary statistic can sometimes give a more precise estimate. The following example
is due to Basu.

Let Θ = (Θ1, · · · ,ΘN ), (N known) and select labels i1, · · · , in at random with replacement from
1, · · · , N , n ≤ N . Set X = (X1, · · · , Xn) = (Θi1 , · · · ,Θin). Thus for all compatible values of x,
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fX |Θ(x|θ) = 1/Nn. Let M be the number of distinct labels drawn. Then, M is ancillary. Let
(X∗

1 , · · · , X∗
M ) be the distinct values.

One possible estimate of the population average is X̄∗ =
∑M
i=1Xi/M . For this, we have conditional

variance
Var(X̄∗|Θ = θ,M = m) =

N −m

N − 1
σ

m
,

where σ2 =
∑N
i=1(θi − θ̄)2/N .

This is a better measure of the variance of X̄∗ than the marginal variance for the case n = 3. In this
case, the distribution of M is

fM (m) =

(
2

m−1

)
(N)m−1

N2
for m = 1, 2, 3,

and 0 otherwise. Because E[X̄∗|Θ = θ,M = m] = θ̄ for all θ, we have that

Var(X̄∗|Θ = θ) = E[
N −M

N − 1
σ2

M
|Θ = θ] =

σ2

N2
(1 + (N − 2) +

(N − 2)(N − 3)
3

) =
σ2

3
N2 − 3N + 3

N2
.
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4 Information

4.1 Fisher Information

Let Θ be a k dimensional parameter and let X have density fX|Θ(x|θ) with respect to ν. The following will
be called the Fisher Information (FI) regularity conditions.

1. 0 = ∂fX|Θ(x|θ)/∂θ exists for all θ, ν a.e.

2. For each i = 1, · · · , k,
∂

∂θi

∫
fX|Θ(x|θ) ν(dx) =

∫
∂

∂θi
fX|Θ(x|θ) ν(dx).

3. The set C = {x : fX|Θ(x|θ) > 0} is the same for all θ.

Definition Assume the FI regularity conditions above. Then the matrix IX(θ) with elements

IX,i,j(θ) = Covθ(
∂

∂θi
log fX|Θ(x|θ), ∂

∂θj
log fX|Θ(x|θ))

is called the Fisher information matrix about Θ based on X.
The random vector with coordinates ∇Θ log fX|Θ(X|θ) is called the score function.
For a statistic T , the conditional score function ∇Θ log fX|T,Θ(X|t, θ).
IX|T (θ|t), the conditional Fisher information given T = t, is the conditional covariance matrix of the

conditional score function.

Under the FI regularity conditions, the mean of the score function is zero. To see this, note that

E[
∂

∂θi
fX|Θ(X|θ)] =

∫
(
∂

∂θi
log fX|Θ(x|θ))fX|Θ(x|θ) ν(dx)

=
∫

∂

∂θi
fX|Θ(x|θ) ν(dx) = 0.

If differentiation is permitted twice under the integral sign, then

0 =
∫

∂2

∂θi∂θj
fX|Θ(x|θ) ν(dx) = Eθ[

∂2

∂θi∂θj
fX|Θ(X|θ)

fX|Θ(X|θ)
].

Because

∂2

∂θi∂θj
log fx|Θ(X|θ) =

( ∂2

∂θi∂θj
fx|Θ(x|θ))fX|Θ(x|θ)− ( ∂

∂θi
fX|Θ(x|θ)) ∂

∂θj
fX|Θ(x|θ))

fX|Θ(X|θ)2
,

37



we have that

E[
∂2

∂θi∂θj
log fX|Θ(X|θ)] = 0− Covθ(

∂

∂θi
log fX|Θ(X|θ), ∂

∂θj
log fX|Θ(X|θ)) = −IX,i,j(θ).

In the case of exponential families using the natural parameter,

fX|Θ(x|θ) = c(θ)e〈θ,T (x)〉.

Thus,
∂2

∂θi∂θj
log fX|Θ(x|θ) =

∂2

∂θi∂θj
log c(θ).

In the case that X1, · · · , Xn are i.i.d given Θ = θ, then

log fX|Θ(X|θ) =
n∑
i=1

log fXi|Θ(Xi|θ).

Consequently,
IX(θ) = nIX1(θ).

Examples.

1. Let θ = (µ, σ), and let X be N(µ, σ2). Then,

log fX|Θ(x|θ) = −1
2

log(2π)− log σ − 1
2σ2

(x− µ)2,

and

∂

∂µ
log fX|Θ(x|θ) =

x− µ

σ2
Varθ( ∂

∂µ log fX|Θ(X|θ)) = σ2

σ4 = 1
σ2

∂

∂σ
log fX|Θ(x|θ) = − 1

σ
+

(x− µ)2

σ3
Varθ( ∂

∂σ log fX|Θ(X|θ)) = 2
σ2

∂

∂σ

∂

∂µ
log fX|Θ(x|θ) = −2

x− µ

σ3
Covθ( ∂

∂µ log fX|Θ(X|θ), ∂∂σ log fX|Θ(X|θ)) = 0.

This give the information matrix

I(θ) =
(

1
σ2 0
0 2

σ2

)
.
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2. The Γ(α, β) family is an exponential family whose density with respect to Lebesgue measure is

fX|A,B(x|α, β) =
βα

Γ(α)
xα−1e−βx =

βα

Γ(α)
1
x

exp(α log x− βx).

Thus, T (x) = (log x, x) is a natural sufficient statistic. θ = (θ1, θ2) = (α,−β) is the natural parameter.

To compute the information matrix, note that

log c(θ) = θ1 log(−θ2)− log Γ(θ1),

∂

∂θ1
log c(θ) = log(−θ2)−

∂

∂θ1
log Γ(θ1),

∂

∂θ2
log c(θ) = −θ1

θ2
,

∂2

∂θ21
log c(θ) = − ∂2

∂θ21
log Γ(θ1),

∂2

∂θ1∂θ2
log c(θ) = − 1

θ2
,

∂2

∂θ22
log c(θ) =

θ1
θ22
.

Thus the information matrix IX(α, β) is(
∂2

∂α2 log Γ(α) − 1
β

− 1
β

α
β2

)

Theorem. Let Y = g(X) and suppose that Pθ << νX for all θ. Then IX(θ) − IY (θ) is positive
semidefinite. This difference of matrices is the 0 matrix if and only if Y is sufficient.

Proof. Define Qθ(C) = P ′θ{(X,Y ) ∈ C} and ν(C) = νX{x : (x, g(s)) ∈ C}. Note that∫
h(x, y) ν(dx× dy) =

∫
h(x, g(x)) νX(dx).

Thus,

Qθ(C) =
∫
IC(x, g(x))fX|Θ(x|θ) νX(dx) =

∫
IC(x, y)fX|Θ(x|θ) ν(dx× dy),

and, consequently, Qθ << ν with Radon-Nikodym derivative fX,Y |Θ(x, y|θ) = fX|Θ(x|θ). Because,

fX|Y,Θ(x|y, θ) =
fX,Y |Θ(x, y|θ)
fY |Θ(y|θ)

,

we have
fX,Y |Θ(x, y|θ) = fX|Θ(x|θ) = fY |Θ(y|θ)fX|Y,Θ(x|y, θ).

or
∂

∂θi
log fX|Θ(x|θ) =

∂

∂θi
log fY |Θ(y|θ) +

∂

∂θi
log fX|Y,Θ(x|y, θ).

a.s. Qθ for all θ.

Claim The two terms on the right are uncorrelated.
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Covθ(
∂

∂θi
log fY |Θ(Y |θ), ∂

∂θj
log fX|Y,Θ(X|Y, θ))

= Eθ[
∂

∂θi
log fY |Θ(Y |θ) ∂

∂θj
log fX|Y,Θ(X|Y, θ)]

= Eθ[Eθ[
∂

∂θi
log fY |Θ(Y |θ) ∂

∂θj
log fX|Y,Θ(X|Y, θ)|Y ]]

= Eθ[
∂

∂θi
log fY |Θ(Y |θ)Eθ[

∂

∂θj
log fX|Y,Θ(X|Y, θ)|Y ]]

= Eθ[
∂

∂θi
log fY |Θ(Y |θ)(0)] = 0.

Thus, by the conditional variance formula

IX(θ) = IX(θ) + EθIX,Y (θ|Y ).

Thus, IX(θ)−IX(θ) is positive semidefinite. The last term is zero if and only if the conditional score function
is zero a.s. Qθ. This happens if and only if fX|Y,Θ(x|y, θ) is constant in θ, i.e. Y is sufficient.

Let H = h(Θ) be a one-to-one reparameterization, and let I∗X be the Fisher information matrix with
respect to this new parameterization. Then, by the chain rule,

I∗X(η) = ∆(η)IX(h−1(η))∆(η)T ,

where ∆(η) is a matrix with ij-th entry ∂h−1
j (η)/∂ηi.

4.2 Kullback-Leibler Information

Definition. Let P and Q be probability measures on the same space. Let p and q be their respective
densities with respect to some measure ν. The Kullback-Leibler information in X is defined as

IX(P ;Q) =
∫

log
p(x)
q(x)

p(x) ν(dx).

In the case of parametric families, let θ, ψ ∈ Ω The Kullback-Leibler information is then

IX(θ;ψ) = Eθ[log
fX|Θ(X|θ)
fX|Θ(X|ψ)

].

For a statistic T , let pt and qt denote the conditional densities for P and Q given T = t with respect to some

measure νt. Then the conditional Kullback-Leibler information is

IX|T (P ;Q) =
∫

log
pt(x)
qt(x)

pt(x) νt(dx).

Examples.
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1. If X is N(θ, 1), then

log
fX|Θ(x|θ)
fX|Θ(x|ψ)

=
1
2
((x− ψ)2 − (x− θ)2) =

1
2
(θ − ψ)(2x− ψ − θ).

Thus IX(θ;ψ) = IX(ψ; θ) = (θ − ψ)2.

2. If X is Ber(θ), then

log
fX|Θ(x|θ)
fX|Θ(x|ψ)

= x log
θ

ψ
+ (1− x) log

1− θ

1− ψ
.

Thus,

IX(θ;ψ) = θ log
θ

ψ
+ (1− θ) log

1− θ

1− ψ
.

Here, IX(θ;ψ) 6= IX(ψ; θ).

Some properties of Kullback-Leibler information are readily verifiable.

1. From Jensen’s inequality, IX(P ;Q) ≥ 0 and equals 0 if and only if P = Q.

2. IX|T (P ;Q) ≥ 0 a.s. PT and equals 0 if and only if pt = qt a.s. P .

3. If X and Y are conditionally indepedent given Θ, then IX,Y (θ;ψ) = IX(θ;ψ) + IY (θ;ψ)

We have the following theorem in analogy to Fisher information.

Theorem. Let Y = g(X), then IX(θ;ψ) ≥ IY (θ;ψ) with equality if and only if Y is sufficient.

Proof. Using the same setup as before, we have

IX(θ;ψ) = Eθ[log
fX|Θ(X|θ)
fX|Θ(X|ψ)

]

= Eθ[log
fY |Θ(Y |θ)
fY |Θ(Y |ψ)

] + Eθ[log
fX|Y,Θ(X|Y, θ)
fX|Y,Θ(X|Y, ψ)

]

= IY (θ;ψ) + Eθ[IX|Y (θ;ψ|Y )] ≥ IY (θ;ψ).

To obtain equality, we use Jensen’s inequality to conclude that

fX|Y,Θ(X|Y, θ) = fX|Y,Θ(X|Y, ψ), a.s. Pθ

.

Using the same ideas, we have the following.

Theorem. Both Fisher and Kullback-Leibler information is the mean of the conditional information
given an ancillary statistic U .
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Proof. Let Pθ have density fX|Θ with respect to a measure ν. For u = U(x), we can write

fX|Θ(x|θ) = fU (u)fX|U,Θ(x|u, θ)

because U does not depend on Θ.

If the FI regularity conditions hold,

∂

∂θi
fX|Θ(x|θ) =

∂

∂θi
fX|U,Θ(x|u, θ).

Because the mean of the conditional score function is 0 a.s.,

IX(θ) = EθIX|U (θ|U).

Similarly, for the Kullback-Leibler information,

fX|Θ(x|θ)
fX|Θ(x|ψ)

=
fX|U,Θ(x|u, θ)
fX|U,Θ(x|u, ψ)

and
IX(θ;ψ) = EIX|U (θ;ψ|U).

Some advantages of the Kullback-Leibler information are

1. It is not affected by the parameterization.

2. It has no smoothness conditions.

We have the following connection under the appropriate regularity conditions.

∂2

∂θi∂θj
IX(θ0; θ)|θ=θ0 =

∂2

∂θi∂θj

∫
log

fX|Θ(X|θ0)
fX|Θ(X|θ)

fX|Θ(X|θ0) ν(dx)|θ=θ0

= −
∫

∂2

∂θi∂θj
log fX|Θ(X|θ0)fX|Θ(X|θ0) ν(dx) = IX,i,j

Examples.

1. For X a Ber(θ) random variable, and δ > 0.

∂2

∂ψ
IX(θ;ψ)|θ=ψ = (

θ

ψ2
+

1− θ

(1− ψ)2
)|θ=ψ =

1
θ(1− θ)

= IX(θ).
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2. Let X be U(0, θ), then

IX(θ, θ + δ) =
∫ θ

0

log(
θ + δ

θ
)
1
θ
dx = log(1 +

δ

θ
)

IX(θ + δ.θ) =
∫ θ

0

log(
θ

θ + δ
)

1
θ + δ

dx+
∫ θ+δ

θ

∞ 1
θ + δ

dx = ∞.

In words, from observations of a U(0, θ) distribution, we have some information to distinguish it from
a U(0, θ + δ) distribution. On the other hand, any observation of X > θ eliminates the U(0, θ)
distribution. This is infinite information in the Kullback-Leibler sense.

Example. This example shows how the Kullback-Leibler information appears in the theory of large
deviations.

Let X1, · · · , Xn be independent Ber(ψ) random variables. Choose 0 < ψ < θ < 1. Then, by Chebyshev’s
inequality, we have for α > 0,

Pψ{
1
n

n∑
i=1

Xi ≥ θ} ≤ E[eα
∑n

i=1
Xi ]

eαnθ
=

(ψeα + (1− ψ))n

eαnθ
.

or
1
n

logPψ{
1
n

∑
i=1

nXi ≥ θ} ≤ log(ψeα + (1− ψ))− αθ

The right side has a minimum value when α satisfies

ψeα

ψeα + (1− ψ)
= θ,

eα =
(1− ψ)θ
ψ(1− θ)

or α = log
(1− ψ)θ
ψ(1− θ)

.

Thus, this minimum value is

log(
(1− ψ)θ

1− θ
+ (1− ψ))− θ log

(1− ψ)θ
ψ(1− θ)

= log(
(1− ψ)
1− θ

)− θ log
(1− ψ)θ
ψ(1− θ)

= −(θ log
θ

ψ
+ (1− θ) log

1− θ

1− ψ
)

= −IX(ψ : θ)

In summary,

P{ 1
n

n∑
i=1

Xi ≥ θ} ≤ exp(−nIX(ψ; θ)).

In words, The probability that a ψ coin can perform better than a θ coin is exponential small with power in
the exponent equal to negative the number of coin tosses times the Kullback-Leibler information.
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5 Statistical Decision Theory

5.1 Framework

A statistical decision is an action that we take after we make an observation X : S → X from Pθ ∈ P. Call
A the set of allowable actions or the action space. Assume that A is a measurable space with σ-field F .

A randomized decision rule is a mapping from the sample space to probability measures on the action
space δ : X → P(A,F) so that δ(·)(B) is measurable for every B ∈ F . In other words, δ is a regular
conditional distribution on A given X. A nonrandomized decision rule is one in which δ is a point mass.
Denote this mapping by δ : X → A.

Let V : S → V be measurable. The criterion for assessing a nonrandomized decision rule is a loss function
L : V ×A→ R. For a randomized decision rule, we use

L(v, δ(x)) =
∫
A

L(v, a) δ(x)(da).

Example. Let n be an even integer and let X1, · · · , Xn be independent Ber(θ) random variables. Let
the parameter space Ω = {1/3, 2/3} and the action space A = {a0, a1}. Set V = Θ and take the loss function

L(v, a) =
{

0 if (v = 1
3 and a = a0) or (v = 2

3 and a = a1),
1 otherwise.

and randomized decision rule

δ(x) =

 probability 1 on a0 if
∑
i=1 xi <

n
2 ,

probability 1 on a1 if
∑
i=1 xi >

n
2 ,

probability 1
2 on each if

∑
i=1 xi = n

2 .

5.2 Classical Decision Theory

Define the risk function as the mean of the loss function.

R(θ, δ) = Eθ[L(V, δ(X))] =
∫
X

∫
V
L(v, δ(x)) Pθ,V (dv)Pθ(dx).

where Pθ,V (D) = Pθ{V ∈ D}.

The most common choices for V is Θ. In this case,

R(θ, δ) =
∫
X
L(θ, δ(x)) Pθ(dx).

This suggests that we define

L(θ, a) =
∫
V
L(v, a) Pθ,V (dv).
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Then, the formula for R holds for all choices of V .

Exercise. Here is a decision theoretic basic for the standard measures of center. Let δ be a non-
randomized decision function with finite range.

1. If L(θ, δ) = I{δ(x) 6=φ0(θ)}, take φ0(θ) to be the mode of δ(X) to minimize risk.

2. If L(θ, δ) = |δ(x)− φ1(θ)|, take φ1(θ) to be the median of δ(X) to minimize risk.

3. If L(θ, δ) = (δ(x) − φ2(θ))2, take φ2(θ) to be the mean to minimize risk. This minimum risk is
Var(δ(X)).

A decision rule with small loss is preferred. If a decision rule δ∗ in a class of allowable decision rules D
minimzes risk for any choice of θ ∈ Ω, then we say that δ∗ is D-optimal.

Sufficient statistics play an important role in classical decision theory.

Theorem. Let δ0 be a randomized decision rule and let T be a sufficient statistic. Then, there exists a
rule δ1 that is a function of the sufficient statistic and has the same risk function.

Proof. For C ∈ F , define
δ1(t)(C) = Eθ[δ0(X)(C)|T (X) = t].

Because T is sufficient, the expectation does not depend on θ. By the standard machine, for any integrable
h : A→ R,

Eθ[
∫
h(a) δ0(X)(da)|T = t] =

∫
h(a) δ1(t)(da).

Taking h(a) = L(θ, a), we have

R(θ, δ0) = Eθ[L(θ, δ0(X))]
= Eθ[Eθ[L(θ, δ0(X))|T (X)]]
= Eθ[L(θ, δ1(T (X)))] = R(θ, δ1)

Note that even if δ0 is nonrandomized, then δ1 will be randomized if T is not one-to-one.

Theorem. Suppose that A ⊂ Rm is convex and that for all θ ∈ Ω, L(θ, a) is a convex function of a. Let
δ be a randomized rule and set

F = {x ∈ X :
∫
A

|a| δ(x)(da) <∞}.

Consider the nonrandomized decision rule

δ0(x) =
∫
A

a δ(x)(da),

for x ∈ F . Then L(θ, δ0(x)) ≤ L(θ, δ(x)) for all x ∈ F and θ ∈ Ω.
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Proof. Because A is convex, δ0(x) ∈ A for all x ∈ F . By Jensen’s inequality,

L(θ, δ0(x)) = L(θ,
∫
A

a δ(x)(da)) ≤
∫
A

L(θ, a) δ(x)(da) = L(θ, δ(x)).

Thus, if F = X , the nonrandomized rule obtain from averaging the randomized rule cannot have larger
loss.

Theorem. (Rao-Blackwell) Suppose that A ⊂ Rm is convex and that for all θ ∈ Ω, L(θ, a) is a convex
function of a. Suppose that T us sufficient and δ0 is a nonrandomized decision rule with Eθ[||δ0(X)||] <∞.
Define

δ1(t) = Eθ[δ0(X)|T = t],

Then, for all θ,
R(θ, δ1) ≤ R(θ, δ0).

Proof. Using the conditional form of Jensen’s inequality, we have

R(θ, δ0) = Eθ[L(θ, δ0(X))] = Eθ[Eθ[L(θ, δ0(X))|T (X)]]
≥ Eθ[L(θ, Eθ[δ0(X)|T (X)])] = Eθ[L(θ, δ1(X))] = R(θ, δ1)

Example. Let X = (X1, · · · , Xn) be independent N(θ, 1) random variables. Set A = [0, 1] and fix c ∈ R.
For loss function

L(θ, a) = (a− Φ(c− θ))2,

a näıve decision rule is

δ0(X) =
1
n

n∑
i=1

I(−∞,c](Xi).

However, T (X) = X̄ is sufficient and δ0 is not a function of T (X).
As the Rao-Blackwell theorem suggests, we compute

Eθ[δ0(X)|T (X)] =
1
n

n∑
i=1

Eθ[I(−∞,c](Xi)|T (X)] = Pθ{X1 ≤ x|T (X)} = Φ(
c− T (X)√
(n− 1)/n

)

because X1 given T (X) = t is N(t, (n− 1)/n)

5.3 Bayesian Decision Theory

In the Bayesian paradigm, we might begin by computing the posterior risk

r(δ|x) =
∫
V
L(v, δ(x)) µV |X(dv|x).

A rule, δ0, is called a formal Bayes rule if,
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1. for every x, the risk r(δ0|x) is finite, and

2. r(δ0|x) ≤ r(δ|x) for every rule δ.

Example. Let A = Ω and L(θ, a) = (θ − a)2. Then∫
Ω

L(θ, a)µΘ|X(dθ|x) = a2 + 2aE[Θ|X = x] + E[Θ2|X = x].

If Θ has finite variance, then δ0(x) = E[Θ|X = x] minimizes the expression above and thus is a formal Bayes
rule.

If no decision rule exists that minimizes risk for all θ, one alternative is to choose a probability measure
η on Ω and minimize the Bayes risk,

r(η, δ) =
∫

Ω

R(θ, δ) η(dθ).

Each δ that minimizes r(η, δ) is called a Bayes rule. If the measure η has infinite mass, then a rule that
minimizes the integral above is called a generalized Bayes rule and η is called an improper prior.

If the loss is nonnegative and if Pθ << ν for all θ, with density fX|Θ, then by Tonelli’s theorem,

r(η, δ) =
∫

Ω

R(θ, δ) η(dθ)

=
∫

Ω

∫
X
L(θ, δ(x))fX|Θ(x|θ) ν(dx)η(dθ)

=
∫
X

∫
Ω

L(θ, δ(x))fX|Θ(x|θ) η(dθ)ν(dx)

=
∫
X
r(δ|x) µX(dx),

where µX(B) =
∫
Ω
Pθ(B) η(dθ) the the marginal for X. In this circumstance, Bayes rules and formal Bayes

rules are the same a.s. µX .

5.4 Admissibility

The previous results give us circumstances in which one decision rule is at least as good as another. This
leads to the following definition.

Definition. A decision rule δ is inadmissible if there exits a decision rule δ0 such that R(θ, δ0) ≤ R(θ, δ)
with strict inequality for at least one value of θ. The decision δ0 is said to dominate δ.

If no rule dominates δ, we say that δ is admissible.
Let λ be a measure on (Ω, τ) and let δ be a decision rule. If

R(θ, δ0) ≤ R(θ, δ) a.e. λ implies R(θ, δ0) = R(θ, δ) a.e. λ.
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Then δ is λ-admissible.

Theorem. Suppose that λ is a probability and that δ is a Bayes rule with respect to λ. Then δ is
λ-admissible.

Proof. Let δ be a Bayes rule with respect to λ and let δ0 be a decision rule. Then∫
Ω

(R(θ, δ)−R(θ, δ0)) λ(dθ) ≤ 0.

If R(θ, δ0) ≤ R(θ, δ) a.s. λ, then the integrand is nonnegative a.s. λ. Because the integral is nonpositive,
the integrand is 0 a.s. λ and δ is λ-admissible.

A variety of results apply restrictions on λ so that λ-admissibility implies admissibility.

Theorem. Let Ω be discrete. If a probability λ has λ{θ} > 0 for all θ ∈ Ω, and if δ is a Bayes rule with
respect to λ, then δ is admissible.

Proof. Suppose that δ0 dominates δ. Then, R(θ, δ0) ≤ R(θ, δ) for all θ with strict inequality for at least
one value of θ. Consequently,

r(λ, δ0) =
∑
θ

λ{θ}R(θ, δ0) <
∑
θ

λ{θ}R(θ, δ) = r(λ, δ),

and δ is not a Bayes rule.

The following are examples of sufficient conditions for admissibility.

1. Every Bayes rule with respect to a prior λ has the same risk function. In particular, a unique Bayes
rule is admissible.

2. The parameter set Ω ⊂ Rk is contained in the closure of its interior, λ is absolutely continuous with
respect to Lebesgue measure. For all δ having finite risk, R(θ, δ) is continuous in θ. δ0 is λ-admissible
with finite risk.

3. A is a convex subset of Rm, {Pθ : θ ∈ Ω} are mutually absolutely continuous, L(θ, a) is strictly convex
in a for all δ, and δ0 is λ-admissible.

Examples.

1. Let X1, · · · , Xn be independent U(0, θ) and set Y = max{X1, · · · , Xn}. Choose loss function L(θ, a) =
(θ − a)2. Then

R(θ, δ) =
n

θn

∫ θ

0

(θ − δ(y))2yn−1 dy = θ2 − 2n
θn−1

∫ θ

0

δ(y)yn−1 dy +
n

θn

∫ θ

0

δ(y)2yn−1 dy.

Choose a rule δ with finite risk function. Then R(·, δ) is continuous. Let λ ∈ P(0,∞) have strictly
positive density `(θ) with respect to Lebesgue measure. Then the formal Bayes rule with respect to λ
is admissible.
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2. Let X1, · · · , Xn be independent Ber(θ). The action space A = [0, 1]. The lost is L(θ, a) = (θ −
a)2/(θ(1 − θ)). Define Y =

∑n
i=1Xi and select Lebesgue measure to be the prior on [0, 1]. Then the

posterior, given X = x is Beta(y + 1, n− y + 1) where y =
∑n
i=1 xi. Then

E[L(Θ, a)|X = x] =
Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)

∫ 1

0

(θ − a)2θy−1(1− θ)n−y−1 dθ.

This has a minimum at a = y/n, for all x and all n. Consequently, δ(x) =
∑n
i=1 xi/n is a Bayes rule

with respect to Lebesgue measure and hence is admissible.

3. Let X have an exponential family of distributions with natural parameter Ω ⊂ R. Let A = Ω and
L(a, θ) = (θ − a)2. Note that all Pθ are mutually absolutely continuous. Take the prior λ to be point
mass at θ0 ∈ Ω. Then δθ0(c) = θ0 is the formal Bayes rule with respect to λ and so is λ-admissible.
By the theorem above, it is also admissible.

4. Returning to Example 1, note that the Pθ are not mutually absolutely continuous and that δθ0(c) = θ0
is not admissible. To verify this last statement, take δ′θ0 = max{y, θ0}. Then

R(θ, δθ0) < R(θ, δ′θ0) for all θ > θ0 and R(θ, δθ0) = R(θ, δ′θ0) for all θ ≤ θ0.

We also have some results that allow us to use admissibility in one circumstance to imply admissibility
in other circumstances.

Theorem. Suppose that Θ = (Θ1,Θ2). For each choice of θ̃2 for Θ2, define Ωθ̃2 = {(θ1, θ2) : θ2 = θ̃2}.
Assume, for each θ̃2, δ is admissible on Ωθ̃2 , then it is admissible on Ω.

Proof. Suppose that δ is inadmissible on Ω. Then there exist δ0 such that

R(θ, δ0) ≤ R(θ, δ) for all θ ∈ Ω and R(θ̃, δ0) < R(θ̃, δ) for some θ̃ ∈ Ω.

Writing θ̃ = (θ̃1, θ̃2) yields a contradiction to the admissibility of δ on Ωθ̃2 .

Theorem. Let Ω ⊂ Rk be open and assume that c(θ) > 0 for all θ and d is a real vauled function of θ.
Then δ is admissible with loss L(θ, a) if and only if δ is admissible with loss c(θ)L(θ, a) + d(θ).

Example. Returning to the example above for Bernoulli random variables, the theorem above tells us
that δ(x) =

∑n
i=1 xi/n is admissible for a quadratic loss function.

Theorem. Let δ be a decision rule. Let {λn : n ≥ 1} be a sequence of measures on Ω such that a
generalized Bayes rule δn with respect to λn exists for every n with

r(λn, δn) =
∫

Ω

R(θ, δn) λn(dθ), lim
n→∞

r(λn, δ)− r(λn, δn) = 0.

Furthermore, assume that one of the following conditions hold.

1. {Pθ : θ ∈ Ω} are mutually absolutely continuous; A is convex; L(θ, ·) is strictly convex for all θ, and
there exits a constant c, a measurable set C, and a measure λ so that

λn << λ,
dλn
dλ

(θ) ≥ c for θ ∈ C with λ(C) > 0.
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2. Ω is contained in the closure of its interior, for every open set G ⊂ Ω, there exists c > 0 such that
λn(G) ≥ c for all n, and the risk function is continuous in θ for every decision rule.

Then δ is admissible.

Proof. We will show that δ inadmissible implies that the limit condition above fails to hold.
With this in mind, choose δ0 so that R(θ, δ0) ≤ R(θ, δ) with strict inequality for θ0.
Using the first condition, set δ̃ = (δ + δ0)/2. Then

L(θ, δ̃(x)) < (L(θ, δ(x)) + L(θ, δ0(x)))/2.

for all θ and all x with δ(x) 6= δ0(x). Because P ′θ0{δ̃(X) = δ(X)} < 1 and {Pθ : θ ∈ Ω} are mutually
absolutely continuous, we have P ′θ{δ̃(X) = δ(X)} < 1 for all θ. Consequently, R(θ, δ̃) < R(θ, δ) for all θ.
For each n

r(λn, δ)− r(λn, δn) ≥ r(λn, δ)− r(λn, δ̃) ≥
∫
C

(R(θ, δ)−R(θ, δ̃)) λn(dθ)

≥ c

∫
C

(R(θ, δ)−R(θ, δ̃)) λ(dθ) > 0.

This contradicts the hypothesis.
Using the second condition, there exists ε > 0 and an open set G ⊂ Ω such that R(θ, δ0) < R(θ, δ) − ε

for all θ ∈ G. Note that for each n,

r(λn, δ)− r(λn, δn) ≥ r(λn, δ)− r(λn, δ0) ≥
∫
G

(R(θ, δ)−R(θ, δ0)) λn(dθ) ≥ ελn(G) ≥ εc,

again contradicting the hypothesis.

Example. Let θ = (µ, σ) and suppose that X1, · · · , Xn be independent N(µ, σ2). Choose the loss
function L(θ, a) = (µ− a)2.

Claim. δ(x) = x̄ is admissible
R(θ, δ) = σ2. For each value σ0, we will show that δ is admissible for the parameter space Ω0 = {(µ, σ0) :

µ ∈ R}. Let λn be the measure equal to
√
n times N(0, σ2

0n). Check that

1. The generalized Bayes rule with respect to λn is δn(x) = nx/(n+ 1).

2. r(λn, δn) = n3/2σ2
0/(n+ 1)

3. r(λn, δ) = n1/2σ2
0

4. limn→∞(n1/2σ2
0 − n3/2σ2

0/(n+ 1)) = limn→∞ n1/2σ2
0/(n+ 1) = 0.

5. The densities of λn with respect to Lebesgue measure increase for each value of µ. Thus, λn(G) > λ1(G)
for any nonempty open G ⊂ R, and dλn/dλ1(µ) ≥ 1.

Thus, the theorem above applies using condition 1 and δ(x) = x̄ is admissible.
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5.5 James-Stein Estimators

Theorem. Consider X = (X1, · · · , Xn), n independent random variables with Xi having a N(µi, 1) distri-
bution. Let A = Ω = Rn = {(µ1, · · · , µn) : µi ∈ R} and let the loss function be L(µ, a) =

∑n
i=1(µi − ai)2.

Then δ(x) = x is inadmissible with dominating rule

δ1(x) = δ(x)[1− n− 2∑n
i=1 x

2
i

].

To motivate this estimator, suppose that M has distribution Nn(µ0, τI). Then, the Bayes estimate for
M is

µ0 + (X − µ0)
τ2

τ2 + 1
.

The marginal distribution of X is Nn(µ0, (1 + τ2)I). Thus, we could estimate 1 + τ2 by
∑n
j=1(Xj −µ0,j)2/c

for some choice of c. Consequently, a choice for estimating

τ2

τ2 + 1
= 1− 1

τ2 + 1

is
1− c∑n

j=1(Xj − µ0,j)2
.

Giving an estimate δ1(x) in the case µ = 0 using the choice c = n− 2.

The proof requires some lemmas.

Lemma. (Stein) Let g ∈ C1(R,R) and let X have a N(µ, 1) distribution. Assume that E[|g′(X)|] <∞.
Then E[g′(X)] = Cov(X, g(X)).

Proof. Let φ be the standard normal density function. Because φ′(x) = xφ(x), we have

φ(x− µ) =
∫ ∞

x

(z − µ)φ(z − µ) dz = −
∫ x

−∞
(z − µ)φ(z − µ) dz.

Therefore,

E[g′(X)] =
∫ ∞

−∞
g′(x)φ(x− µ) dx =

∫ 0

−∞
g′(x)φ(x− µ) dx+

∫ ∞

0

g′(x)φ(x− µ) dx

= −
∫ 0

−∞
g′(x)

∫ x

−∞
(z − µ)φ(z − µ) dzdx+

∫ ∞

0

g′(x)
∫ ∞

x

(z − µ)φ(z − µ) dzdx

= −
∫ 0

−∞
(z − µ)φ(z − µ)

∫ 0

z

g′(x) dxdz +
∫ ∞

0

(z − µ)φ(z − µ)
∫ z

0

g′(x) dxdz

=
∫ 0

−∞
(z − µ)φ(z − µ)(g(z)− g(0)) dz +

∫ ∞

0

(z − µ)φ(z − µ)(g(z)− g(0)) dz

=
∫ ∞

−∞
(z − µ)φ(z − µ)g(z) dz = Cov(X, g(X)).
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Lemma. Let g ∈ C1(Rn, Rn) and let X have a Nn(µ, I) distribution. For each i, define

hi(y) = Eµ[gi(X1, · · · , Xi−1, y,Xi+1 · · · , Xn)]

and assume that
h′i(y) = Eµ[

d

dy
gi(X1, · · · , Xi−1, y,Xi+1 · · · , Xn)]

and that Eµ[h′(Xi)|] <∞. Then

Eµ||X + g(X)− µ||2 = n+ Eµ[||g(X)||2 + 2∇ · g(X)].

Proof.

Eµ||X + g(X)− µ||2 = Eµ||X − µ||2 + Eµ[||g(X)||2] + 2Eµ〈(X − µ), g(X)〉

= n+ Eµ[||g(X)||2] + 2Eµ
n∑
i=1

((Xi − µi)gi(X)).

Note that, by the previous lemma

Eµ[(Xi − µi)gi(X)] = Eµ[(Xi − µi)hi(Xi)] = Covµ(Xi, hi(Xi)) = Eµ[h′i(Xi)] = Eµ[
∂

∂xi
gi(X)].

Proof. (Jones-Stein estimator) Set

gi(x) = − xi(n− 2)∑
j=1 nx

2
j

.

To see that the lemma above applies, note that, for x 6= 0, ∂2g/∂x2
i is bounded in a neighborhood of x.

Moreover,

Eµ[|h′i(Xi)|] ≤ (n− 2)
∫
Rn

|
∑n
j=1 x

2
j − 2x2

i |
(
∑n
j=1 x

2
j )2

fX|M (x|µ) dx

≤ (n− 2)
∫
Rn

3∑n
j=1 x

2
j

fX|M (x|µ) dx = (n− 2)
3n
n− 2

= 3n

Thus, the risk function

R(µ, δ1) = n+ Eµ[||g(X)||+ 2∇ · g(X)]

= n+ (n− 2)2Eµ[
∑n
i=1X

2
i

(
∑n
j=1X

2
j )2

− 2
∑n
i=1X

2
i

(
∑n
j=1X

2
j )2

]

= n− (n− 2)2Eµ[
1∑n

j=1X
2
j

] < n = R(µ, δ0)
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remark. The Jones-Stein estimator is also not admissible. It is dominated by

δ+(x) = x(1−min{1, n− 2
(
∑n
j=1 x

2
j )2

}.

5.6 Minimax Procedures

Definition A rule δ0 is called minimax if,

sup
θ∈Ω

R(θ, δ0) = inf
δ

sup
θ∈Ω

R(θ, δ)

Proposition. If δ has constant risk and is admissible, then it is minimax.

Theorem. Let δ0 be the Bayes rule for λ. If λ(Ω0) = 1, where

Ω0 = {θ : R(θ, δ0) = sup
ψ∈Ω

R(ψ, δ0)} = 1,

then δ0 is minimax.

Proof. Let δ be any other rule, then

sup
ψ∈Ω

R(ψ, δ0) =
∫

Ω

R(θ, δ0)IΩ0 λ(dθ) ≤
∫

Ω

R(θ, δ)IΩ0 λ(dθ) ≤ sup
ψ∈Ω

R(ψ, δ).

Note that if δ0 is the unique Bayes rule, then the second inequality in the line above should be replaced
by strict inequality and, therefore, δ0 is the unique minimax rule.

Example.

1. For X a N(µ, σ2) random variable, δ(x) is admissible with loss L(θ, a) = (µ − a)2 and hence loss
L̃(θ, a) = (µ− a)2/σ2. The risk function for L̃ is constant R̃(θ, δ) = 1 and δ is minimax.

2. For X1, · · · , Xn are independent Ber(θ). The Bayes rule with respect to a Beta(α, β) is

δ(x) =
α+

∑n
i=1 xi

α+ β + n
,

with risk

R(θ, δ) =
nθ(1− θ) + (α− αθ − βθ)2

(α+ β + n)2
.

Check that R(θ, δ) is constant if and only if α = β =
√
n/2 which leads to the unique minimax

estimator

δ0(x) =
√
n/2 +

∑n
i=1 xi√

n+ n
.

The risk R(θ, δ0) = 1/(4(1 +
√
n)2).
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Theorem. Let {λn : n ≥ 1} be a sequence of probability measures on Ω and let δn be the Bayes rule
with respect to λn. Suppose that limn→∞ r(λn, δn) = c <∞. If a rule δ0 satisfies R(θ, δ0) ≤ c for all θ, then
δ0 is minimax.

Proof. Assume that δ0 is not minimax. Then we can find a rule δ and a number ε > 0 such that

sup
ψ
R(ψ, δ) ≤ sup

ψ∈Ω
R(ψ, δ0)− ε ≤ c− ε.

Choose N0 so that r(λn, δn) ≥ c− ε/2 for all n ≥ N0. Then, for such n,

r(λn, δ) =
∫
R(θ, δ) λn(dθ) ≤ (c− ε)

∫
λn(dθ) < c− ε/2 ≤ r(λn, δn)

and thus δn is not a Bayes rule with respect to λn.

Example. Let the independent observations Xi be N(µi, 1), i = 1, · · · ,m. Set δ(x) = x, A = Rm, and
L(µ, a) =

∑n
i=1(µi− ai)2. δn(x) = nx/(n+ 1) is a Bayes rule for λn, the law of a Nm(0, nI) with Bayes risk

r(λn, δn) = mn/(n+ 1). Thus,
lim
n→∞

r(λn, δn) = m = R(µ, δ).

Thus, δ, which is not admissible, is minimax.

A prior distribution λ0 for Θ is called least favorable if

inf
δ
r(λ0, δ) = sup

λ
inf
δ
r(λ, δ).

Theorem. If δ0 is a Bayes rule with respect to λ0 and R(θ, δ0) ≤ r(λ0, δ0) for all θ, then δ0 is minimax
and λ0 is least favoriable.

Proof. For any rule δ̃ and prior λ̃, infδ r(λ̃, δ) ≤ r(λ̃, δ̃) ≤ supλ r(λ, δ̃). Thus,

inf
δ

sup
θ
R(θ, δ) ≤ sup

θ
R(θ, δ0) ≤ r(λ0, δ0) = inf

δ
r(λ0, δ)

≤ sup
λ

inf
δ
r(λ, δ) ≤ inf

δ
sup
λ
r(λ, δ) ≤ inf

δ
sup
θ
R(θ, δ).

Thus, the inequalities above are all equalities.

Example. For X1, · · · , Xn are independent Ber(θ) and quadratic loss function, we saw that the minimax
rule was a Bayes rule with respect to Beta(

√
n/2,

√
n/2) with constant risk function. Thus, this prior

distribution is least favorable.

Definition. Suppose that Ω = {θ1, · · · , θk}. Then the risk set

R = {z ∈ Rk : zi = R(θi, δ) for some decision rule δ and i = 1, · · · , k}.

The lower boundary of a set C ⊂ Rk is

∂L(C) = {z ∈ C̄ : xi ≤ zi for all i and xi < zi for some i implies x 6∈ C}.
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The set C is closed from below if ∂L(C) ⊂ C.

Note that the risk set is convex. Interior points correspond to randomized decision rules.

Theorem. (Minimax Theorem) Suppose that the loss function is bounded below and that Ω is finite.
Then

sup
λ

inf
δ
r(λ, δ) = inf

δ
sup
θ
R(θ, δ).

In addition, there exists a least favorable distribution λ0. If the risk set is closed from below, then there is
a minimax rule that is a Bayes rule with respect to λ0.

We will use the following lemmas in the proof.

Lemma. For Ω finite, the loss function is bounded below if and only if the risk function is bounded
below.

Proof. If the loss function is bounded below, then its expectation is also bounded below.
Because Ω is finite, if the loss function is unbounded below, then there exist θ0 ∈ Ω and a sequence of

actions an so that L(θ0, an) < −n. Now take δn(x) = an to see that the risk set is unbounded below.

Lemma. If C ⊂ Rk is bounded below, them ∂L(C) 6= ∅.

Proof. Clearly ∂L(C) = ∂L(C̄). Set

c1 = inf{z1 : z ∈ C̄},

and
cj = inf{zj : zi = ci, i = 1, · · · , j − 1}.

Then (c1, · · · , ck) ∈ ∂L(C).

Lemma. If their exists a minimax rule for a loss function that is bounded below, then there is a point
on ∂L(R) whose maximum coordinate value is the same as the minimax risk.

Proof. Let z ∈ Rk be the risk function for a minimax rule and set

s = max{z1, · · · , zk}

be the minimax risk. Define
C = R ∩ {x ∈ Rk : xi ≤ s for all i}.

Because the loss function is bounded below, so is R and hence C. Therefore, ∂L(C) 6= ∅. Clearly, ∂L(C) ⊂
∂L(R) and each point in C is the risk function of a minimax rule.

Proof. (Minimax Theorem) For each real s define the closed convex set Cs = (−∞, s]k and set s0 =
inf{s : Cs ∩R 6= ∅}.

Claim. There is a least favorable decision.
Note that

s0 = inf
δ

sup
θ
R(θ, δ).
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Because the interior of Cs0 is convex and does not intersect R, the separating hyperplane theorem guarantees
a vector v and a constant c such that

〈v, z〉 ≥ c for all z ∈ R and 〈v, z〉 < c for all z ∈ int(Cs0).

It is easy to see that each coordinate of v is non-negative. Normalize v so that its sum is 1. Define a
probability λ0 on Ω = {θ1 · · · , θk} with with respective masses

λ0(θi) = vi.

Use the fact that {s0, · · · , s0} is in the closure of the interior of Cs0 to obtain

c ≥ s0

n∑
j=1

vj = s0.

Therefore,
inf
δ
r(λ0, δ) = inf

z∈R
〈v, z〉 ≥ c ≥ s0 = inf

δ
sup
θ
R(θ, δ) ≥ inf

δ
r(λ0, δ),

and λ0 is a least favorable distribution.
Note that for s > s0, R̄∩Cs is closed, bounded and non-empty. Let {sn : n ≥ 1} decrease to s0. Then by

the finite interection property, R̄ ∩ Cs0 6= ∅. The elements in this set are risks functions for minimax rules.
By a lemma above, ∂(R̄ ∩ Cs) 6= ∅. Because R is closed from below, ∂(R̄ ∩ Cs) ⊂ R, we have a point in R
that is the risk function for a minimax rule.

Finally, note that R(θ, δ) ≤ s0 for all θ implies that r(λ, δ) ≤ s0 = infδ r(λ0, δ).

5.7 Complete Classes

Definition. A class of decision rules C is complete if for every δ 6∈ C, there exists δ0 ∈ C that dominates δ.
A minimal complete class contains no proper complete class.

Certainly, a complete class contains all admissible rules. If a minimal complete class exists, then it consits
of exactly the admissible rules.

Theorem. (Neyman-Pearson fundamental lemma) Let Ω = A = {0, 1}. The loss function

L(0, 0) = 0, L(0, 1) = k0 > 0,
L(1, 0) = k1 > 0, L(1, 1) = 0.

Set ν = P0 + P1 and fi = dPi/dν and let δ be a decision rule. Define the test function φ(x) = δ(x){1}
corresponding to δ. Let C denote the class of all rules with test functions of the following forms:

For each k > 0 and each function γ : X → [0, 1],

φk,γ(x) =

 1 : if f1(x) > kf0(x),
γ(x) : if f1(x) = kf0(x),
0 : if f1(x) < kf0(x).
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For k = 0,

φ0(x) =
{

1 : if f1(x) > 0,
0 : if f1(x) = 0.

For k = ∞,

φ∞(x) =
{

1 : if f0(x) = 0,
0 : if f0(x) > 0.

Then C is a minimal complete class.

The Neyman-Pearson lemma uses the φk,γ to construct a likelihood ratio test

f1(x)
f0(x)

and a test level k. If the probability of hitting the level k is positive, then the function γ is a randomization
rule needed to resolve ties.

The proof proceeds in choosing a level α for R(0, δ), the probability of a type 1 error, and finds a test
function from the list above that yields a decision rule δ∗ that matches the type one error and has a lower
type two error, R(1, δ∗).

Proof. Append to C all rules having test functions of the form φ0,γ . Call this new collection C′.

Claim. The rules in C′\C are inadmissible.
Choose a rule δ ∈ C′\C. Then δ has test function φ0,γ for some γ such that P0{γ(X) > 0, f1(X) = 0} > 0.

Let δ0 be the rule whose test function is φ0. Note that f1(x) = 0 whenever φ0,γ(x) 6= φ0(x),

R(1, δ) = E1[L(1, δ(X))] = L(1, 0)E1[δ(X){0}]

= k1E1[1− φ0,γ(X)] = k1(1−
∫
φ0,γ(x)f1(x) ν(dx))

= k1(1−
∫
φ0(x)f1(x) ν(dx)) = R(1, δ0)

Also,

R(0, δ) = E0[L(0, δ(X))] = L(0, 1)E1[δ(X){1}]
= k0E0[φ0,γ(X)] = k0(E0[γ(X)I{f1(X)=0}] + E0[1I{f1(X)>0}])
= k0E0[γ(X)I{f1(X)=0}] +R(0, δ0) > R(0, δ0).

Thus, δ0 dominates δ and δ is not admissible.
To show that C′ is a complete class, choose a rule δ 6∈ C′ and let φ be the corresponding test function.

Set
α = R(0, δ) =

∫
k0φ(x)f0(x) ν(dx).

We find a rule δ∗ ∈ C′ such R(0, δ∗) = α and R(1, δ∗) < R(1, δ). We do this by selecting an appropriate
choice for k∗ and γ∗ for the δ∗ test function φk∗,γ∗ .
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To this end, set

g(k) = k0P0{f1(X) ≥ kf0(X)} =
∫
{f1≥kf0}

k0f0(x) ν(dx).

Note that

1. g is a decreasing function.

2. limk→∞ g(k) = 0.

3. g(0) = k0 ≥ α.

4. By the monotone convergence theorem, g is left continuous.

5. By the dominated convergence theorem, g has right limit

g(k+) = k0P0{f1(X) > kf0(X)}.

6. If γ(x) = 1 for all x, then g(k) = R(0, δ∗).

7. If γ(x) = 0 for all x, then g(k+) = R(0, δ∗).

Set k∗ = inf{k : g(k) ≤ α}. Because g decreases to zero, if α > 0, then k∗ < ∞. To choose γ∗, we
consider three cases and check that R(0, δ) = R(0, δ∗).

Case 1. α = 0, k∗ <∞. Choose γ∗ = 0. Then

R(0, δ∗) = k0E0[φk∗,γ∗(X)] = g(k∗+) = 0 = α.

Case 2. α = 0, k∗ = ∞.

R(0, δ∗) = k0E0[φ∞(X)] =
∫
k0φ∞(x)f0(x) ν(dx) = 0 = α.

Case 3. α > 0, k∗ <∞.

Note that
k0P0{f1(X) = k∗f0(X)} = g(k∗)− g(k∗+).

For those x which satisfy f1(x) = k∗f0(x), define

γ∗(x) =
α− g(k∗+)

g(k∗)− g(k∗+)
.

Then,

R(0, δ∗) = k0

∫
φk∗,γ∗(x)f0(x) ν(dx) = g(k∗+) + k0

∫
{f1(x)=k∗f0(x)}

α− g(k∗+)
g(k∗)− g(k∗+)

f0(x) ν(dx)

= g(k∗+) + k0
α− g(k∗+)

g(k∗)− g(k∗+)
P0{f1(X) = k∗f0(X)} = α.
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We now verify that R(1, δ∗) < R(1, δ) in two cases.

Case1. k∗ <∞

Define
h(x) = (φk∗,γ∗(x)− φ(x))(f1(x)− k∗f0(x)).

Here, we have

1. 1 = φk∗,γ∗(x) ≥ φ(x) for all x satisfying f1(x)− k∗f0(x)) > 0.

2. 0 = φk∗,γ∗(x) ≤ φ(x) for all x satisfying f1(x)− k∗f0(x) < 0.

Because φ is not one of the φk,γ , there exists a set B such that ν(B) > 0 and h > 0 on B.

0 <

∫
B

h(x) ν(dx) ≤
∫
h(x) ν(dx)

=
∫

(φk∗,γ∗(x)− φ(x))f1(x) ν(dx)−
∫

(φk∗,γ∗(x)− φ(x))k∗f0(x) ν(dx)

=
∫

((1− φ(x))− (1− φk∗,γ∗(x)))f1(x) ν(dx) +
k∗

k0
(α− α)

=
1
k1

(R(1, δ)−R(1, δ∗)).

Case2. k∗ = ∞

In this case, 0 = α = R(0, δ) and hence φ(x) = 0 for almost all x for which f0(x) > 0. Because φ and
φ∞ differ on a set of ν positive measure,∫

{f0=0}
(φ∞(x)− φ(x))f1(x) ν(dx) =

∫
{f0=0}

(1− φ(x))f1(x) ν(dx) > 0.

Consequently,

R(1, δ) = k1P0{f0(X) > 0}+ k1

∫
{f0=0}

(1− φ(x))f1(x) ν(dx) > k1P0{f0(X) > 0} = R(1, δ∗).

This gives that C′ is complete. Check that no element of C dominates any other element of C, thus C is
minimal complete.

All of the rules above are Bayes rules which assign positive probability to both parameter values.

Example.

1. Let θ1 > θ0 and let fi have a N(θi, 1) density. Then, for any k,

f1(x)
f0(x)

> k if and only if x >
θ1 + θ0

2
+

log k
θ1 − θ0

.
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2. Let 1 > θ1 > θ0 > 0 and let fi have a Bin(n, θi) density. Then, for any k,

f1(x)
f0(x)

> k if and only if x >
n log( 1−θ0

1−θ1 ) + log k

log( θ1(1−θ0)θ0(1−θ1) )
.

3. Let ν be Lebesgue measure on [0, n] plus counting measure on {0, 1, · · · , n}. Consider the distributions
Bin(n, p) and U(0, n) with respective densities f0 and f1. Note that

f1(x) =
n∑
i=1

1
n
I(i−1,i)(x).

Then
f1(x)
f0(x)

=

 ∞ : if 0 < x < n, x not an integer,
0 : if x = 0, 1, · · · , n.
undefined : otherwise

The only admissible rule is to take the binomial distribution if and only if x is an integer.
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6 Hypothesis Testing

We begin with a function
V : S → V.

In classical statistics, the choices for V are functions of the parameter Θ.
Consider {VH ,VA}, a partition of V. We can write a hypothesis and a corresponding alternative by

H : V ∈ VH versus A : V ∈ VA.

A decision problem is called hypothesis testing if

1. The action space A = {0, 1}.

2. The loss function L satisfies

L(v, 1) ≥ L(v, 0) for v ∈ VH
L(v, 1) ≤ L(v, 0) for v ∈ VA

The action a = 1 is called rejecting the hypothesis. Rejecting the hypothesis when it is true is called a
type I error.

The action a = 0 is called failing to reject the hypothesis. Failing to reject the hypothesis when it is false
is called a type II error.

We can take L(v, 0) = 0, L(v, 1) = c for v ∈ VH and L(v, 0) = 1, L(v, 1) = 0 for v ∈ VA and keep the
ranking of the risk function. Call this a 0− 1− c loss function

A randomized decision rule in this setting can be described by a test function φ : X → [0, 1] by

φ(x) = δ(x){1}.

Suppose V = Θ. Then,

1. The power function of a test βφ(θ) = Eθ[φ(X)].

2. The operating characteric curve ρφ = 1− βφ.

3. The size of φ is supθ∈ΩH
βφ(θ).

4. A test is called level α if its size is at most α.

5. The base of φ is infθ∈ΩA
βφ(θ).

6. A test is called floor γ if its base is at most γ.

7. A hypothesis (alternative) is simple if ΩH (ΩA) is a singleton set. Otherwise, it is called composite.

This sets up the following duality between the hypothesis and its alternative.
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hypothesis alternative
test function φ test function ψ = 1− φ
power operating characteristic
level base
size α floor γ

To further highlight this duality, note that for a 0− 1− c loss function,

R(θ, δ) =
{
cβφ(θ) if θ ∈ ΩH
1− βφ(θ) if θ ∈ ΩA

If we let Ω′H = ΩA and Ω′A = ΩH and set the test function to be φ′ = 1−φ. Then, for c times a 0−1−1/c
loss function and δ′ = 1− δ

R′(θ, δ′) =
{
βφ′(θ) if θ ∈ Ω′H
c(1− βφ′(θ)) if θ ∈ Ω′A

,

and R(θ, δ) = R′(θ, δ′)

Definition. A level α test φ is uniformly most powerful (UMP) level α if for every level α test ψ

βψ(θ) ≤ βφ(θ) for all θ ∈ ΩA.

A floor γ test φ is uniformly most cautious (UMC) level γ if for every floor γ test ψ

βψ(θ) ≥ βφ(θ) for all θ ∈ ΩH .

Note that if T is a sufficient statistic, then

Eθ[φ(X)|T (X)]

has the same power function as φ. Thus, in choosing UMP and UMC tests, we can confine ourselves to
functions of sufficient statistics.

6.1 Simple Hypotheses and Alternatives

Throughout this section, Ω = {θ0, θ1}, we consider the hypothesis

H : Θ = θ0 versus A : Θ = θ1

and write type I error α0 = βφ(θ0) and type II error α1 = 1 − βφ(θ1). The risk set is a subset of [0, 1]2

that is closed, convex, symmetric about the point (1/2, 1/2) (Use the decision rule 1− φ.), and contains the
portion of the line α1 = 1−α0 lying in the unit square. (Use a completely randomized decision rule without
reference to the data.)

In terms of hypothesis testing, the Neyman-Pearson lemma states that all of the decisions rules in C lead
to most powerful and most cautious tests of their respective levels and floors.
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Note that
βφ∞(θ0) = Eθ0 [φ∞(X)] = Pθ0{f0(X) = 0} = 0.

The test φ∞ size 0 and never rejects H. On the other hand, φ0 has the largest possible size

βφ(θ0) = Pθ0{f1(X) > 0}.

for an admissible test.

Lemma. Assume for i = 0, 1 that Pθi << ν has density fi with respect to ν. Set

Bk = {x : f1(x) = kf0(x)}.

and suppose that Pθi
(Bk) = 0 for all k ∈ [0,∞] and i = 0, 1. Let φ be a test of the form

φ = I{f1>kf0}.

If ψ is any test satisfying βψ(θ0) = βφ(θ0), then, either

ψ = φ a.s. Pθi
, i = 0, 1 or βψ(θ1) > βψ(θ1).

In this circumstance, most powerful tests are essentially unique.

Lemma. If φ is a MP level α test, then either βφ(θ1) = 1 or βφ(θ0) = α.

Proof. To prove the contrapositive, assume that βφ(θ1) < 1 and βφ(θ0) < α. Define, for c ≥ 0,

g(c, x) = min{c, 1− φ(x)},

and
hi(c) = Eθi

[g(c,X)].

Note that g is bounded. Because g is continuous and non-decreasing in c, so is hi. Check that h0(0) = 0 and
h0(1) = 1− βφ(θ0). Thus, by the intermediate value theorem, there exists c̃ > 0 so that h0(c̃) = α− βφ(θ0).
Define a new test function φ′(x) = φ(x) + g(c̃, x). Consequently, βφ′(θ0) = βφ(θ0) + α− βφ(θ0) = α.

Note that

Pθ1{φ(X) < 1} = 1− Pθ1{φ(X) = 1} ≥ 1− Eθ1 [φ(X)] = 1− βφ(θ1) > 0.

On the set φ < 1, φ′ > φ. Thus,
βφ′(θ1) > βφ(θ1)

and φ is not most powerful.

In other words, a test that is MP level α must have size α unless all tests with size α are inadmissible.

Remarks.

1. If a test φ corresponds to the point (α0, α1) ∈ (0, 1)2, then φ is MC floor 1−α1 if and only if it is MP
level α0.

2. If φ is MP level α, then 1− φ has the smallest power at θ1 among all tests with size at least 1− α.

3. If φ1 is a level α1 test of the form of the Neyman-Pearson lemma and if φ2 is a level α2 test of that
form with α1 < α2, then βφ1(θ1) < βφ2(θ1)
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6.2 One-sided Tests

We now examine hypotheses of the form

H : Θ ≤ θ0 versus A : Θ > θ0

or
H : Θ ≥ θ0 versus A : Θ < θ0.

Definition. Suppose that Ω ⊂ R and that

dPθ
dν

(x) = fX|Θ(x|θ)

for some measure ν. Then the parametric family is said to have a monotone likelihood ratio (MLR) in T , a
real valued statistic, if whenever θ1 < θ2, the ratio

fX|Θ(x|θ2)
fX|Θ(x|θ1)

is a monotone function of T (x) a.e. Pθ1 + Pθ2 . We use increasing MLR and decreasing MLR according to
the properties of the ratio above. If T (x) = x, we will drop its designation.

Examples.

1. If X is Cau(θ, 1), then
fX|Θ(x|θ2)
fX|Θ(x|θ1)

=
π(1 + (x− θ1)2)
π(1 + (x− θ2)2)

.

This is not monotone in x.

2. For X a U(0, θ) random variable,

fX|Θ(x|θ2)
fX|Θ(x|θ1)

=


undefined if x ≤ 0,
θ1
θ2

if 0 < x < θ1,

∞ if θ1 ≤ x ≤ θ2
undefined if x ≥ θ2.

This is MLR. The undefined regions have Pθ1 + Pθ2 measure 0.

3. If X has a one parameter exponential with natural parameter θ, then

fX|Θ(x|θ2)
fX|Θ(x|θ1)

=
c(θ2)
c(θ1)

exp((θ2 − θ1)T (x))

is increasing in T (x) for all θ1 < θ2.

4. Uniform family, U(θ, θ + 1).
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5. Hypergeometric family, Hyp(N, θ, k).

Lemma. Suppose that Ω ⊂ R and that the parametric family {Pθ : θ ∈ Ω} is increasing MLR in T . If
ψ is nondecreasing as a function of T , then

g(θ) = Eθ[ψ(T (X))]

is nondecreasing as a function of θ.

Proof. Let θ1 < θ2,

A = {x : fX|Θ(x|θ1) > fX|Θ(x|θ2)}, a = sup
x∈A

ψ(T (x)),

B = {x : fX|Θ(x|θ1) < fX|Θ(x|θ2)}, b = inf
x∈B

ψ(T (x)).

Then, on A, the likelihood ratio is less than 1. On B, the likelihood ratio is greater than 1. Thus, b ≥ a.

g(θ2)− g(θ1) =
∫
ψ(T (x))(fX|Θ(x|θ2)− fX|Θ(x|θ1))ν(dx)

≥
∫
A

a(fX|Θ(x|θ2)− fX|Θ(x|θ1))ν(dx) +
∫
B

b(fX|Θ(x|θ2)− fX|Θ(x|θ1))ν(dx)

= (b− a)
∫
B

(fX|Θ(x|θ2)− fX|Θ(x|θ1))ν(dx) > 0.

because ν(B) > 0.

Theorem. Suppose that {Pθ : θ ∈ Ω} is a parametric family with increasing MLR in T , and consider
tests of the form

φ(x) =

 0 if T (x) < t0,
γ if T (x) = t0,
1 if T (x) > t0

Then,

1. φ has a nondecreasing power function.

2. Each such test for each θ0 is UMP of its size for testing

H : Θ ≤ θ0 versus A : Θ > θ0

3. For α ∈ [0, 1] and each θ0 ∈ Ω, there exits t0 ∈ [−∞,+∞] and γ ∈ [0, 1] such that the test φ is UMP
level α.

Proof. The first statement follows from the previous lemma.
Let θ0 < θ1 and consider the simple hypothesis

H̃ : Θ = θ0 versus Ã : Θ = θ1
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Because {Pθ : θ ∈ Ω} has increasing MLR in T , the UMP test in the Neyman-Pearson lemma is the same as
the test given above as long as γ and t0 satisfy βφ(θ0) = α.

Also, the same test is used for each of the simple hypotheses, and thus it is UMP for testing H against
A.

Note that for exponential families, if the natural parameter π is an increasing function of θ, then the
theorem above holds.

Fix θ0, and choose φα of the form above so that βφα
(φ0) = α. If the {Pθ : θ ∈ Ω} are mutually absolutely

continuous, then βφα
(φ1) is continuous in α. To see this, pick a level α. If Pθ{t0} > 0 and γ ∈ (0, 1), then

small changes in α will result in small changes in γ and hence small changes in βφα(φ1). Pθ{t0} = 0, then
small changes in α will result in small changes in t0 and hence small changes in βφα(φ1). The remaining
cases are similar.

By reversing inequalities throughout, we obtain UMP tests for

H : Θ ≥ θ0 versus A : Θ < θ0

Examples.

1. Let X1, · · · , Xn be independent N(µ, σ2
0). Assume that σ2

0 is known, and consider the hypothesis

H : M ≤ µ0 versus A : M > µ0.

Take T (x) = x̄, then X̄ is N(µ, σ2
0/n) and a UMP test is φ(x) = I(x̄α,∞)(X̄) where

x̄α = σ0Φ−1(1− α)/
√
n+ µ0.

In other words, let

Z =
X̄ − µ0

σ0/
√
n

and reject H if Z > zα where zα = Φ−1(1− α). The power function

βφ(µ) = Pµ{X̄ >
σ0zα√
n

+ µ0}

= Pµ{
X̄ − µ

σ0/
√
n
> zα +

µ0 − µ

σ0/
√
n
}

= 1− Φ(zα +
µ0 − µ

σ0/
√
n

)

2. Let X1, · · · , Xn be independent Ber(θ) random variables. Then T (x) =
∑n
i=1Xi is the natural suf-

ficient statistic and π(θ) = log(θ/(1 − θ)), the natural parameter, is an increasing function. Thus, a
UMP test of

H : Θ ≤ θ0 versus A : Θ > θ0

has the form above.
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3. Let X1, · · · , Xn be independent Pois(θ) random variables. Then T (x) =
∑n
i=1Xi is the natural

sufficient statistic and π(θ) = log θ, the natural parameter, is an increasing function.

4. Let X1, · · · , Xn be independent U(0, θ) random variables. Then T (x) = max1≤i≤n xi is a sufficient
statistic. T (X) has density

fT |Θ(t|θ) = nθ−ntn−1I(0,θ)(t)

with respect to Lebesgue measure. The UMP test of

H : Θ ≤ θ0 versus A : Θ > θ0

is nonrandomized with t0 determined by

α = βφ(θ0) =
n

θn0

∫ θ0

t0

tn−1 dt = 1− tn0
θn0
,

or t0 = θ0(1− α)1/n. The power function

βφ(θ) =
n

θn0

∫ θ

t0

tn−1 dt = 1− tn0
θn

= 1− θn0 (1− α)
θn

.

A second UMP test is

φ̃(x) =
{

1 if T (X) > θ0
α if T (X) ≤ θ0.

6.3 Two-sided Tests

Let θ1 < θ2. The following situations are called two-sided hypotheses.

H : Θ ≤ θ1 or Θ ≥ θ2 versus A : θ1 < Θ < θ2,

H : θ1 ≤ Θ ≤ θ2 versus A : Θ < θ1 or Θ > θ2,

H : Θ = θ0 versus A : Θ 6= θ0.

The first case has a two sided hypothesis. The second and third has a two sided alternative.

We will focus on the case of a one parameter exponential family.

Theorem. (Lagrange multipliers) Let f, g1, · · · , gn be real valued functions and let λ1, · · · , λn be real
numbers. If ξ0 minimizes

f(ξ) +
n∑
i=1

λigi(ξ)

and satisfies gi(ξ0) = ci, i = 1, · · · , n, then ξ0 minimizes f subject to gi(ξ0) ≤ ci for each λi > 0 and
gi(ξ0) ≥ ci for each λi < 0.

Proof. Suppose that there exists ξ̃ such that f(ξ̃) < f(ξ0) with gi satisfying the conditions above at ξ̃.
Then ξ0 does not minimize f(ξ) +

∑n
i=1 λigi(ξ).
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Lemma. Let p0, · · · pn ∈ L1(ν) have positive norm and let

φ0(x) =

 1 if p0(x) >
∑n
i=1 kipi(x),

γ(x) if p0(x) =
∑n
i=1 kipi(x),

0 if p0(x) <
∑n
i=1 kipi(x),

where 0 ≤ γ(x) ≤ 1 and the ki are real numbers. Then φ0 minimizes∫
(1− φ(x))p0(x) ν(dx)

subject to the range of φ in [0, 1],∫
φ(x)pj(x) ν(dx) ≤

∫
φ0(x)pj(x) ν(dx) whenever kj > 0,∫

φ(x)pj(x) ν(dx) ≥
∫
φ0(x)pj(x) ν(dx) whenever kj < 0.

Proof. Choose φ with range in [0,1] satisfying the inequality constraints above. Clearly,

φ(x) ≤ φ0(x) whenever p0(x)−
n∑
i=1

kipi(x) > 0,

φ(x) ≥ φ0(x) whenever p0(x)−
n∑
i=1

ki(x) < 0.

Thus, ∫
(φ(x)− φ0(x))(p0(x)−

n∑
i=1

kipi(x)) ν(dx) ≤ 0.

or ∫
(1− φ0(x))p0(x) ν(dx) +

n∑
i=1

ki

∫
φ0(x)pi(x)) ν(dx)

≤
∫

(1− φ(x))p0(x) ν(dx) +
n∑
i=1

ki

∫
φ(x)pi(x)) ν(dx).

Let ξ be a measurable function from X to [0, 1], and let

f(ξ) =
∫

(1− ξ(x))p0(x) ν(dx), gi(ξ) =
∫
ξ(x)pi(x) ν(dx).

for i = 1, · · · , n. we see that φ0 minimizes

f(ξ) +
n∑
i=1

kigi(ξ).
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Thus, φ0 minimizes f(ξ) subject to the constraints.

Lemma. Assume {Pθ : θ ∈ Ω} has an increasing monotone likelihood ratio in T . Pick θ1 < θ2 and for a
test φ, define αi = βφ(θi), i = 1, 2. Then, there exists a test of the form

ψ(x) =

 1 if t1 < T (x) < t2,
γi if T (x) = ti,
0 if ti > T (x) or t2 < T (x),

with t1 ≤ t2 such that βψ(θi) = αi, i = 1, 2.

Proof. Let φα be the UMP α-level test of

H : Θ ≤ θ1 versus A : Θ > θ1.

For each α̃ ∈ [0, 1− α1], set
φ̃α̃(x) = φα1+α̃(x)− φα̃(x).

Note that for all x, φ̃α(x) ∈ [0, 1], i.e., φ̃α is a test. Because the form of test φα, φ̃α̃ has the form of the test
above (with t1 or t2 possibly infinite.) In addition,

βφ̃α
(θ1) = (α1 + α̃)− α̃ = α1.

φ̃0 = φα1 is the MP and φ̃1−α1 = 1− φ1−α1 is the least powerful level α1 test of

H̃ : Θ = θ1 versus Ã : Θ = θ2.

φ is also a level α1 test of H̃ versus Ã, we have that

βφ̃1−α1
(θ2) ≤ α2 ≤ βφ̃0

(θ2).

Now use the continuity of α→ βφα
(θ2), to find α̃ so that βφ̃α̃

(θ2) = α2.

Theorem. Let {Pθ : θ ∈ Ω} be an exponential family in its natural parameter. If ΩH = (−∞, θ1] ∪
[θ2,+∞) and ΩA = (θ1, θ2), θ1 < θ2, then a test of the form

φ0(x) =

 1 if t1 < T (x) < t2,
γi if T (x) = ti,
0 if ti > T (x) or t2 < T (x),

with t1 ≤ t2 minimizes βφ(θ) for all θ < θ1 and for all θ > θ1, and it maximizes βφ(θ) for all θ1 < θ < θ2
subject to βφ(θi) = αi = βφ0(θi) for i = 1, 2. Moreover, if t1, t2, γ1, γ2 are chosen so that α1 = α2 = α, then
φ0 is UMP level α.

Proof. Given α1, α2, choose t1, t2, γ1, γ2 as determined above. Choose ν so that fT |θ(t|θ) = c(θ) exp(θt).
Pick θ0 ∈ Ω and define

pi(t) = c(θi) exp(θit),

for i = 0, 1, 2.
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Set bi = θi − θ0, i = 1, 2, and consider the function

d(t) = a1 exp(b1t) + a2 exp(b2t).

Case I. θ1 < θ0 < θ2
Solve for a1 and a2 in the pair of linear equations

d(t1) = 1, d(t2) = 1

and note that the solutions ã1 and ã2 are both positive.
To verify this, check that d is monotone if ã1ã2 < 0 and negative if both ã1 < 0 and ã2 < 0.
Apply the lemma with ki = ãic(θ0)/c(θi). Note that minimizing

∫
(1 − φ(x))p0(x) ν(dx) is the same as

maximizing βφ(θ0) and that the constraints are

βφ(θi) ≤ βφ0(θi)

The test that achieves this maximum has

φ(x) = 1 if c(θ0) exp(θ0t) > k1c(θ1) exp(θ1t) + k2c(θ2) exp(θ2t)

or
φ(x) = 1 if 1 > ã1 exp(b1t) + ã2 exp(b2t).

Because ã1 and ã2 are both positive, the inequality holds if t1 < t < t2, and thus φ = φ0.

Case II. θ0 < θ1
To minimize βφ(θ0), we modify the lemma, reversing the roles of 0 and 1 and replacing minimum with

maximum. Now the function d(t) is strictly monotone if a1 and a2 have the same sign. If a1 < 0 < a2, then

lim
t→−∞

d(t) = 0, lim
t→∞

d(t) = ∞

and equals 1 for a single value of t. Thus, we have ã1 > 0 > ã2 in the solution to

d(t1) = 1, d(t2) = 1.

As before, set ki = ãic(θ0)/c(θi) and the argument continues as above. A similar argument works for the
case θ1 > θ2.

Choose t1, t2, γ1, and γ2 in φ0 so that α1 = α2 = α and consider the trivial test φα(x) = α for all x.
Then by the optimality properties of φ0,

βφ0(θ) ≤ α for every θ ∈ ΩH .

Consequently, φ0 has level α and maximizes the power for each θ ∈ ΩA subject to the constraints βφ(θi) ≤ α
for i = 1, 2, and thus is UMP.

Examples.
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1. Let X1, · · · , Xn be independent N(θ, 1). The UMP test of

H : Θ ≤ θ1 or Θ ≥ θ2 versus A : θ1 < Θ < θ2

is
φ0(x) = I(x̄1,x̄2)(x̄).

The values of x̄1 and x̄2 are determined by

Φ(
√
n(x̄2 − θ1))− Φ(

√
n(x̄1 − θ1)) = α and Φ(

√
n(x̄2 − θ2))− Φ(

√
n(x̄1 − θ2)) = α.

2. Let Y be Exp(θ) and let X = −Y . Thus, θ is the natural parameter. Set ΩH = (0, 1] ∪ [2,∞) and
ΩA = (1, 2). If α = 0.1, then we must solve the equations

et2 − et1 = 0.1 and e2t2 − e2t1 = 0.1

Setting a = et2 and b = et1 , we see that these equations become a − b = 0.1 and a2 − b2 = 0.1. We
have solutions t1 = log 0.45 and t2 = log 0.55. Thus, we reject H if

− log 0.55 < Y < − log 0.45.

3. Suppose X is Bin(n, p) and consider the hypothesis

H : P ≤ 1
4

or P ≥ 3
4

versus A :
1
4
< Θ <

3
4
.

Then θ = log(p/(1 − p)) is the natural parameter and ΩH = (−∞,− log 3] ∪ [log 3,∞). For n = 10,
the UMP α = 0.1 test has t1 = 4, t2 = 6 with γ1 = γ2 = 0.2565.

4. Let X1, · · · , Xn be independent N(θ, 1). Consider the test

H : Θ = θ0 versus A : Θ 6= θ0.

For a test level α and a parameter value θ1 < θ0, the test φ1 that rejects H if X̄ < −zα/
√
n + θ0

is the unique test that has the highest power at θ1. On the other hand, the test φ2 that rejects H
if X̄ > zα/

√
n + θ0 is also an α level test that has the highest power for θ2 > θ0. Using the z-score

Z = (X̄ − θ)/(σ/
√
n), we see

βφ1(θ1) > P{Z < −zα} = P{Z > zα} > βφ2(θ1).

φ1 test has higher power at θ1 than φ2 and thus φ2 is not UMP. Reverse the roles to see that the first
test, and thus no test, is UMP.
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6.4 Unbiased Tests

The following criterion will add an additional restriction on tests so that we can have optimal tests within
a certain class of tests.

Definition. A test φ is said to be unbiased if for some level α,

βφ(θ) ≤ α, θ ∈ ΩH and βφ(θ) ≥ α, θ ∈ ΩA.

A test of size α is call a uniformly most powerful unbiased (UMPU) test if it is UMP within the class of
unbiased test of level α.

We can also define the dual concept of unbiased floor α and uniformly most cautious unbiased (UMCU)
tests. Note that this restriction rules out many admissible tests.

We will call a test φ α-similar on G if

βφ(θ) = α for all θ ∈ G

and simply α-similar if G = Ω̄H ∩ Ω̄A.

Lemma. Suppose that βφ is continuous for every φ. If φ0 is UMP among all α-similar tests and has
level α, then φ0 is UMPU level α.

Proof. Note that in this case an unbiased test is similar.
Because the test ψ(θ) = α for all θ is α-similar, βφ0(θ) ≥ α for θ ∈ ΩA. Because φ0 has level α, it is

unbiased and consequently UMPU.

Definition. Let G ⊂ Ω be a subparameter space corresponding to a subfamily Q0 ⊂ P0 and let
Ψ : Q0 → G. If T is a sufficient statistic for Ψ, then a test φ has Neyman structure with respect to G and
T if

Eθ[φ(X)|T (X) = t]

is constant a.s. Pθ, θ ∈ G.

If Q0 = {Pθ : θ ∈ Ω̄H ∩ Ω̄A}, φ has Neyman structure, and

Eθ[φ(X)|T (X)] = α,

then φ is α-similar. This always holds if φ(X) and T (X) are independent.

Example. (t-test) Suppose that X1, · · · , Xn are independent N(µ, σ2) random variables. The usual
α-level two-sided t-test of

H : M = µ0 versus A : M 6= µ0

is

φ0(x) =

{
1 if |x̄−µ0|

s/
√
n
> tn−1,α/2,

0 otherwise.

Here,

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2,
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and tn−1,α/2 is determined by P{Tn−1 > tn−1,α/2} = α/2, the right tail of a tn−1(0, 1) distribution, and

Ω̄H ∩ Ω̄A = ΩH = {(µ, σ) : µ = µ0}.

To check that φ is α-similar, note that the distribution of

T =
X̄ − µ0

s/
√
n

is tn−1(0, 1) for all σ. Hence, for all θ ∈ ΩH .

βφ(θ) = Pθ{
X̄ − µ0

s/
√
n

> tn−1,α/2} = α.

A sufficient statistic for the subparameter ΩH is

U(X) =
n∑
i=1

(Xi − µ0)2 = (n− 1)S2 + n(X̄ − µ0)2.

Write

W (X) =
X̄ − µ0√
U(X)

=
sign(T )

√
n
√

(n− 1)/T 2 + 1
.

Thus, W is a one-to-one function of T and φ(X) is a function of W (X). Because the distribution of
(X1 − µ0, · · · , Xn − µ0) is spherically symmetric, the distribution of

(
X1 − µ0√
U(X)

, · · · , Xn − µ0√
U(X)

)

is uniform on the unit sphere and thus is independent of U(X). Consequently, W (X) is independent of
U(X) for all θ ∈ ΩH and thus φ has the Neyman structure relative to ΩH and U(X).

Lemma. Let T be a sufficient statistic for the subparameter space G. Then a necessary and sufficient
condition for all tests similar on G to have the Neyman structure with respect to T is that T is boundedly
complete.

Proof. First suppose that T is boundedly complete and let φ be an α similar test, then

Eθ[Eθ[φ(X)|T (X)]− α] = 0 for all θ ∈ G.

Because T is boundedly complete on G,

Eθ[φ(X)|T (X)] = α a.s. Pθ for all θ ∈ G.

If T is not boundedly complete, there exists a non zero function h, ||h|| ≤ 1, such that Eθ[h(T (X))] = 0
for all θ ∈ G. Define

ψ(x) = α+ ch(T (x)),
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where c = min{α, 1 − α}. Then ψ is an α similar test. Because E[ψ(X)|T (X)] = ψ(X) psi does not have
Neyman structure with respect to T .

We will now look at the case of multiparameter exponential families X = (X1, · · · , Xn) with natural
parameter Θ = (Θ1, · · · ,Θn). The hypothesis will consider the first parameter only. Thus, write U =
(X2, · · · , Xn) and Ψ = (Θ2, · · · ,Θn). Because the values of Ψ do not appear in the hypothesis tests, they
are commonly called nuisance parameters.

Theorem. Using the notation above, suppose that (X1, U) is a multiparameter exponential family.

1. For the hypothesis
H : Θ1 ≤ θ01 versus A : Θ1 > θ01,

a conditional UMP and a UMPU level α test is

φ0(x1|u) =

 1 if x1 > d(u),
γ(u) if x1 = d(u),
0 if x1 < d(u).

where d and γ are determined by

Eθ[φ0(X1|U)|U = u] = α, θ1 = θ01.

2. For the hypothesis
H : Θ1 ≤ θ11 or Θ1 ≥ θ21 versus A : θ11 < Θ1 < θ21,

a conditional UMP and a UMPU level α test is

φ0(x1|u) =

 1 if d1(u) < x1 < d2(u),
γi(u) if x1 = di(u), i = 1, 2.
0 if x1 < d1(u) or x > d2(u).

where d and γi are determined by

Eθ[φ0(X1|U)|U = u] = α, θ1 = θi1, i = 1, 2.

3. For the hypothesis
H : θ11 ≤ Θ1 ≤ θ21 versus A : Θ1 < θ11 or Θ1 > θ21

a conditional UMP and a UMPU level α test is

φ0(x1|u) =

 1 if x1 < d1(u) or x > d2(u),
γi(u) if x1 = di(u), i = 1, 2
0 if d1(u) < x1 < d2(u).

where di and γi are determined by

Eθ[φ0(X1|U)|U = u] = α, θ1 = θi1, i = 1, 2.
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4. For testing the hypothesis
H : Θ1 = θ01 versus A : Θ1 6= θ01,

a UMPU test of size α is has the form in part 3 with di and γi, i = 1, 2 determined by

Eθ[φ0(X1|U)|U = u] = α, and Eθ[Xφ0(X1|U)]− αE0
θ [X], θ1 = θ01.

Proof. Because (X1, U) is sufficient for θ, we need only consider tests that are functions of (X1, U). For
each of the hypotheses in 1-4,

Ω̄H ∩ Ω̄A = {θ ∈ Ω : θ1 = θ01} or Ω̄H ∩ Ω̄A = {θ ∈ Ω : θ1 = θi1, i = 1, 2}.

In all of these cucumstances U is boundedly complete and thus all test similar on Ω̄H ∩ Ω̄A have Neyman
structure. The power of any test function is analytic, thus,the lemma above states that proving φ0 is UMP
among all similar tests establishes that it is UMPU.

The power function of any test φ,

βφ(θ) = Eθ[Eθ[φ(X1|U)|U ]].

Thus, for each fixed u and θ, we need only show that φ0 maximizes

Eθ[φ(X1|U)|U = u]

subject to the appropriate conditions. By the sufficiency of U , this expectation depends only on the first
coordinate of θ.

Because the conditional law of X given U = u is a one parameter exponential family, parts 1-3 follows
from the previous results on UMP tests.

For part 4, any unbiased test φ must satisfy

Eθ[φ(X1|U)|U = u] = α, and
∂

∂θ1
Eθ[φ(X1|U)] = 0, θ ∈ Ω̄H ∩ Ω̄A.

Differentiation under the integral sign yields

∂

∂θ1
βφ(θ) =

∫
φ(x1|u)

∂

∂θ1
(c(θ) exp(θ1x1 + ψ · u)) ν(dx)

=
∫
φ(x1|u)(x1c(θ) +

∂

∂θ1
c(θ)) exp(θ1x+ ψ · u) ν(dx)

= Eθ[X1φ(X1|U)] + βφ(θ)
∂c(θ)/∂θ1
c(θ)

= Eθ[X1φ(X|U)]− βφ(θ)Eθ[X1].

Use the fact that U is boundedly complete, ∂βφ(θ)/∂θ1 = 0, and that βφ(θ) = α on Ω̄H ∩ Ω̄A to see that
for every u

Eθ[X1φ(X1|U)|U = u] = αEθ[X1|U = u], θ ∈ Ω̄H ∩ ΩA.
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Note that this condition on φ is equivalent to the condition on the derivative of the power function.
Now, consider the one parameter exponential family determined by conditioning with respect to U = u.

We can write the density as
c1(θ1, u) exp(θ1x1).

Choose θ11 6= θ01 and return to the Lagrange multiplier lemma with

p0(x1) = c1(θ11, u) exp(θ11x1), p1(x1) = c1(θ01, u) exp(θ01x1), p1(x1) = x1c1(θ01, u) exp(θ01x1)

to see that the test φ with the largest power at θ11 has φ(x1) = 1 when

exp(θ11x1) > k1 exp(θ01x1) + k2x1 exp(θ01x1),

or
exp((θ11 − θ01)x1) > k1 + k2x1.

Solutions to this have φ(x1) = 1 either in a semi-infinite interval or outside a bounded interval. The first
option optimizes the power function only one side of the hypothesis. Thus, we need to take φ0 according
to the second option. Note that the same test optimizes the power function for all values of θ11, and thus is
UMPU.

Examples.

1. (t-test) As before, suppose that X1, · · · , Xn are independent N(µ, σ2) random variables. The density
of (X̄, S2) with respect to Lebesgue measure is

fX̄,S2|M,Σ(x̄, s2|µ, σ) =
√
n(n−1

2σ2 )(n−1)/2

√
2πΓ(n−1

2 )σ
exp

(
− 1

2σ2
(n((x̄− µ0)− (µ− µ0))2 + (n− 1)2s2)

)
= c(θ1, θ2)h(v, u) exp(θ1v + θ2u)

where
θ1 =

µ− µ0

σ2
, θ2 = − 1

σ2
,

v = n(x̄− µ0), u = n(x̄− µ0)2 + (n− 1)s2.

The theorem states that the UMPU test of

H : Θ1 = 0 versus A : Θ1 6= 0

has the form of part 4. Thus φ0 is 1 in a bounded interval. From the requirement that

Eθ[φ0(V |U)|U ] = αEθ[V |U ] = 0 for θ1 = 0,

we have that this interval is symmetric about zero. Taking d1(u) = −c
√
u and d2(u) = c

√
u gives the

classical 2-sided t-test. Because it satisfies the criteria in part 4, it is UMPU.
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2. (Contrasts) In an n parameter exponential family with natural parameter Θ, let Θ̃1 =
∑n
i=1 ciΘi with

c1 6= 0. Let Y1 = X1/c1. For i = 2, · · · , n, set

Θ̃i = Θi, and Yi =
Xi − ciX1

c1
.

With the parameter space Ω̃ and observations Y , we proceed as before.

3. Let Yi be independent Pois(λi), i = 1, 2. To consider the hypothesis

H : Λ1 = Λ2 versus A : Λ1 ≤ Λ2

write the probability density function of Y = (Y1, Y2)

exp (−(λ1 + λ2))
y1!y2!

exp (y2 log(λ2/λ1) + (y1 + y2) log λ2)

with respect to counting measure in Z2
+. If we set θ1 = log(λ2/λ1) then the hypothesis becomes

H : Θ1 = 1 versus A : Θ1 ≤ 1.

The theorem above applies taking

θ2 = log λ2, X1 = Y2, U = Y1 + Y2.

Use the fact that U is Pois(λ1 + λ2) to see that the conditional distribution of X1 given U = u is
Bin(p, u) where

p =
λ2

λ1 + λ2
=

eθ1

1 + eθ1
.

4. Let X be Bin(n, p) and θ = log(p/(1− p)). Thus, the density

fX|Θ(x|θ)
(
n

x

)
(1 + eθ)−nexθ.

For the hypothesis
H : Θ = θ0 versus A : Θ 6= θ0

the UMPU level α test is

φ0(x) =

 1 if x < d1 or x > d2,
γi if x = di, i = 1, 2
0 if d1 < x < d2.

where di and γi are determined by

Eθ0 [φ0(X)] = α, and Eθ0 [Xφ0(X)]− αEθ0 [X], θ1 = θ01.

77



Once d1 and d2 have been determined, solving for γ1 and γ2 comes from a linear system. For p0 = 1/4,
we have θ0 = − log 3. With n = 10 and α = 0.05, we obtain

d1 = 0, d2 = 5, γ1 = 0.52084, γ2 = 0.00918.

An equal tailed-test, having

d1 = 0, d2 = 5, γ1 = 0.44394, γ2 = 0.00928.

is not UMPU. The probability for rejecting will be less than 0.05 for θ in some interval below θ0.

5. Let Yi be independent Bin(pi, ni), i = 1, 2. To consider the hypothesis

H : P1 = P2 versus A : P1 6= P2

The probability density function with respect to counting measure is(
n1

x1

)(
n1

x2

)
(1− p1)n1(1− p2)n2 exp

(
x2 log

p2(1− p1)
p1(1− p2)

+ (x1 + x2) log
p1

1− p1

)
.

If we set θ1 = log(p2(1− p1)/p1(1− p2)) then the hypothesis becomes

H : Θ1 = 0 versus A : Θ1 6= 0.

The theorem above applies taking

θ2 = log
p1

1− p1
, X1 = Y2, U = Y1 + Y2.

Then, for u = 0, 1, · · · , n1 + n2,

Pθ{X1 = x|U = u} = Ku(θ)
(

n1

u− x

)(
n2

x

)
eθx, x = 0, 1 · · · ,min(u, n2), x ≥ u− n1.

If θ = 0, this is a hypergeometric distribution and Ku(0) =
(
n1+n2
u

)−1
.

6. (2 × 2 contingency tables) Let A and B be two events and consider n independent trials whose data
are summarized in the following table

A Ac Total
B Y11 Y12 n1

Bc Y12 Y22 n1

Total m1 m2 n

The distribution of the table entries is Multi(n, p11, p12, p21, p22) giving a probability density function
with respect to counting measure is(

n

y11, y12, y21, y22

)
pn22 exp

(
y11 log

p11

p22
+ y12 log

p12

p22
+ y21 log

p21

p22

)
.
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We can use the theorem to derive UMPU tests for any parameter of the form

θ̃1 = c11 log
p11

p22
+ c12 log

p12

p22
+ c21 log

p21

p22
.

Check that a test for independence of A and B follows from the hypothesis

H : Θ̃1 = 0 versus A : Θ̃1 6= 0.

with the choices c11 = −1, and c12 = c21 = 1, take X1 = Y11 and U = (Y11 + Y12, Y11 + Y21). Compute

Pθ{X1 = x1|U = (n1,m2)} = Km2(θ1)
(
n1

y

)(
m2

m2 − x1

)
eθ1(m2−x1),

x = 0, 1, · · · ,min(n1,m2), m2x ≤ n2.

The choice θ1 = 0 gives the hypergeometric distribution. This case is called Fisher’s exact test.

7. (two-sample problems, inference for variance) Let Xi1, · · · , Xini
, i = 1, 2 be independent N(µi, σ2

i ).
Then the joint density takes the form

c(µ1, µ2, σ
2
1 , σ

2
2) exp

− 2∑
i=1

(
1

2σ2
i

ni∑
j=1

x2
ij +

niµi
σ2
i

x̄i)

 ,

where x̄i is the sample mean of the i-th sample.

Consider the hypothesis
H : Σ2

2/Σ
2
1 ≤ δ0 versus A : Σ2

2/Σ
2
1 > δ0.

For the theorem, take

θ = (
1

2δ0σ2
1

− 1
2σ2

2

,− 1
2σ2

1

,
n1µ1

σ2
1

,
n2µ2

σ2
2

),

Y1 =
n2∑
j=1

X2
2j , U = (

n1∑
j=1

X2
1j +

1
δ0

n2∑
j=1

X2
2j , X̄1, X̄2).

Consider the statistic

V =
(n2 − 1)S2

2/δ0
(n1 − 1)S2

1 + (n2 − 1)S2
2/δ0

=
(Y1 − n2U

2
3 )/δ0

U1 − n1U2
2 − n2U2

3 /δ0
.

S2
i is the sample variance based on the i-th sample.

If σ2
2 = δ0σ

2
1 , i.e. θ1 = 0, then V is ancillary and, by Basu’s theorem, V and U are independent. Note

that V is increasing in Y1 for each U . Thus, the UMPU α-level test of

H : Θ1 ≤ 0 versus A : Θ1 > 0.

rejects H whenever
V > d0, P0{V > d0} = α.
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Note that

V =
(n2 − 1)F

(n1 − 1) + (n2 − 1)F
with F =

S2
2/δ0
S2

1

.

Thus, V is an increasing function of F , which has the Fn2−1,n1−1-distribution. Consequently, the
classical F test is UMPU.

8. (two-sample problem, inference for means) Consider the hypothesis

H : M1 = M2 versus A : M1 6= M2.

or
H : M1 ≥M2 versus A : M1 < M2.

The situaion σ2
1 6= σ2

2 is called the Fisher-Behrens problem. To utilize the theorem above, we consider
the case σ2

1 = σ2
2 = σ2.

The joint density function is

c(µ1, µ2, σ
2) exp

 1
σ2

2∑
i=1

ni∑
j=1

x2
ij +

n1µ1

σ2
x̄1 +

n2µ2

σ2
x̄2

 .

For the theorem take,

θ = (
µ2 − µ1

(1/n1 + 1/n2)σ2
,
n1µ1 + n2µ2

(n1 + n2)σ2
,− 1

2σ2
),

Y1 = X̄2 − X̄1, U = (n1X̄1 + n2X̄2,

2∑
i=1

ni∑
j=1

X2
ij).

Consider the statistic

T =
(X̄2 − X̄1)/

√
1/n1 + 1/n2√

((n1 − 1)S2
1 + (n2 − 1)S2

2)/(n1 + n2 − 2)
.

Again, by Basu’s theorem, when θ = 0, T and U are independent. Also, T , a function of (Y1, U) is
increasing in Y1 for each value of U . Thus, the exist values t1 and t2 so that the test takes the form of
part 4 of the theorem.

Upon division of the numerator and denominator of T by σ2, the numberator is a standard normal
random variable. The denominator is χ2

n1+n2−1. Because the numerator and denominator are inde-
pendent, T has the tn1+n2−2-distribution.

6.5 Equivariance

Definition. Let P0 be a parametric family with parameter space Ω and sample space (X ,B). Let G be a
group of transformations on X . We say that G leaves X invariant if for each g ∈ G and each θ ∈ Ω, there
exists g∗ ∈ G such that

Pθ(B) = Pθ∗(gB) for every B ∈ B.
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If the parameterization is identifiable, then the choice of θ∗ is unique. We indicate this by writing θ∗ = ḡθ.
Note that

P ′θ{gX ∈ B} = P ′θ{X ∈ g−1B} = P ′ḡθ{X ∈ gg−1B} = P ′ḡθ{X ∈ B}.

We can easily see that if G leaves P0 invariant, then the transformation ḡ : Ω → Ω is one-to-one and onto.
Moreover, the mapping

g 7→ ḡ

is a group isomorphism from G to Ḡ.

We call a loss function L invariant under G if for each a ∈ A, there exists a unique a∗ ∈ A such that

L(ḡθ, a∗) = L(θ, a).

Denote a∗ by g̃a. Then, the transformation g̃ : A→ A is one-to-one and onto. The mapping

g → g̃

is a group homomorphism.

Example. Pick b ∈ Rn and c > 0 and consider the transformation g(b,c) on X = Rn defined by

g(b,c)(x) = b+ cx.

This forms a transformation group with g(b1,c1) ◦ g(b2,c2) = g(c1b2+b1,c1c2). Thus, the group is not abelian.
The identity is g(0,1). The inverse of g(b,c) is g(−b/c,1/c).

Suppose that X1, · · · , Xn are independent N(µ, σ2). Then

ḡ(b,c)(µ, σ) = (
µ− b

c
,
σ

c
).

To check this,

Pθ(g(b,c)B) =
∫
cB+b

1
(σ
√

2π)n
exp

(
− 1

2σ2

n∑
i=1

(zi − µ)2
)
dz

=
∫
cB

1
(σ)

√
2π)n

exp

(
− 1
σ2

n∑
i=1

(yi − (µ− b))2
)
dy

=
∫
B

1
((σ/c)

√
2π)n

exp

(
− 1

2(σ/c)2

n∑
i=1

(xi −
1
c
(b− µ)2

)
dx = Pḡ(b,c)θ(B)

Definition. A decision problem is invariant under G is P0 and the loss function L is invariant. In such
a case a randomized decision rule δ is equivariant if

δ(gx)(g̃B) = δ(x)(B) for all measurable B and for all x ∈ X .
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For a non-randomized rule, this becomes

δ(gx) = g̃δ(x) for all g ∈ G for all x ∈ X .

Definition.

1. The test
H : Θ ∈ ΩH versus A : Θ ∈ ΩA

is invariant under G if both ΩH and ΩA are invariant under Ḡ.

2. A statistic T is invariant under G if T is constant on orbits, i.e.,

T (gx) = T (x) for all x ∈ X and g ∈ G.

3. A test of size α is called uniformly most powerful invariant (UMPI) if it is UMP with the class of α
level tests that are invariant under G.

4. A statistic M is maximal invariant under G if it is invarian N(t and

M(x1) = M(x2) implies x1 = g(x2) for some g ∈ G.

Thus, a statistic T is invariant if and only if there is a function h such that T = h ◦M .

Proposition. Let H be a hypothesis test invariant under a transformation group G. If there exists a
UMPI test of size α, then it is unbiased. If there also exists a UMPU test of size α that is invariant under
G, then the two tests have the same power function. If either the UMPI test or the UMPU test is unique,
then the two tests are equal.

Proof. We only need to prove that UMPI tests of size α are unbiased. This follows from the fact that
the test

φ(x) = α for all x ∈ X

is invariant under G.

In the past, we have reduced tests to functions of a sufficient statistic U . If a test ψ(U) is UMP among
all invariant tests depending on U , then we can not necessarily conclude that ψ(U) is UMPI. The following
results provides a condition under which it is sufficient to consider tests that are function of U .

Proposition. Let (G,G, λ), a measure space with a σ-finite λ, be a group of transformations on (X ,B).
Consider a hypothesis that is invariant under G.

Suppose that for any set B ∈ B,

{(x, g) : g(x) ∈ B} ∈ σ(B × G).

Further, assume that
λ(D) = 0 imples λ{h ◦ g : h ∈ D} = 0 for all g ∈ G.
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Suppose that there exists sufficient statistic U with the property that U is constant on the orbits of G, i.e.,

U(x1) = U(x2) implies U(gx1) = U(gx2) for all g ∈ G.

Consequently, G induces a group GU of transformations on the range of U via

gU (U(x)) = U(gx).

Then, for any test φ invariant under G, there exist a test that is a function of U invariant under G (and GU )
that has the same power function as φ.

Exercise. Let X1, · · · , Xn be independent N(µ, σ2). The test

H : Σ2 ≥ σ2
0 versus A : Σ2 < σ2

0

is invariant under G = {gc : c ∈ R}, gcx = x+ c. The sufficient statistic (X̄, S2) satisfy the conditions above
GU = {hc : c ∈ R} and hc(u1, u2) = (u1 + c, u2). The maximal invariant under GU is S2.

Use the fact that (n− 1)S2/σ2
0 has a χ2

n−1-distribution when Σ2 = σ2
0 and the proposition above to see

that a UMPI test is the χ2 test. Note that this test coincides with the UMPU test.

Consider the following general linear model

Yi = Xiβ
T + εi, i = 1, · · · , n,

where

• Yi is the i-th observation, often called response.

• β is a p-vector of unknown parameters, p < n, the number of parameters is less that the number of
observations.

• Xi is the i-th value of the p-vector of explanatory variables, often called the covariates, and

• ε1, · · · , εn are random errors.

Thus, the data are
(Y1, X1), · · · , (Yn, Xn).

Because the Xi are considered to be nonrandom, the analysis is conditioned on Xi. The εi is viewed as
random measurement errors in measuring the (unknown) mean of Yi. The interest is in the parameter β.

For normal models, let εi be independent N(0, σ2), σ2 unknown. Thus Y is Nn(βXT , σ2In), X is a fixed
n× p matrix of rank r ≤ p < n.

Consider the hypothesis
H : βLT = 0 versus A : βLT 6= 0.

Here, L is an s× p matrix, rank(L) = s ≤ r and all rows of L are in the range of X.
Pick an orthogonal matrix Γ such that

(γ, 0) = βXTΓ,
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where γ is an r-vector and 0 is the n− r-vector of zeros and the hypothesis becomes

H : γi = 0, for all i = 1, · · · , s versus A : γi 6= 0, for some i = 1, · · · , s.

If Ỹ = Y Γ, then Ỹ is N((γ, 0), σ2In). Write y = (y1, y2) and y1 = (y11, y12) where y1 is an r-vector and
y11 is an s-vector. Consider the group

G = {gΛ,b,c : b ∈ Rr−s, c > 0,Λ ∈ O(s,R)}.

with
gΛ,b,c(y) = c(y11Λ, y12 + b, y2).

Then, the hypothesis is invariant under G.

By the proposition, we can restrict our attention to the sufficient statistic (Ỹ1, ||Ỹ2||).

Claim. The statistic M(Ỹ ) = ||Ỹ11||/||Ỹ2|| is maximal invariant.

Clearly, M(Ỹ ) is invariant. Choose ui ∈ Rs\{0}, and ti > 0, i = 1, 2. If ||u1||/t1 = ||u2||/t2, then t1 = ct2
with c = ||u1||/||u2||. Because u1/||u1|| and u2/||u2|| are unit vectors, there exists an orthogonal matrix Λ
such that u1/||u1|| = u2/||u2||Λ, and therefore u1 = cu2Λ

Thus, if M(y1) = M(y2) for y1, y2 ∈ Rn, then

y1
11 = cy2

11Λ and ||y1
2 || = c||y2

2 || for some c > 0, Λ ∈ O(s,R).

Therefore,
y1 = gΛ,b,c(y2), with b = c−1y1

12 − y2
12.

Exercise. W = M(Ỹ )2(n− r)/s has the noncentral F -distribution NCF (s, n− r, θ) with θ = ||γ||2/σ2.
Write fW |Θ(w|θ) for the density of W with respect to Lebesgue measure. Then the ratio

fW |Θ(w|θ)/fW |Θ(w|0)

is an increasing function of w for any given θ 6= 0 Therefore, a UMPI α-level test of

H : Θ = 0 versus A : Θ = θ1.

rejects H at critical values of the Fs,n−r distribution. Because this test is the same for each value of θ1, it
is also a UMPI test for

H : Θ = 0 versus A : Θ 6= 0.

An alternative to finding Γ directly proceeds as follows. Because Ỹ = Y Γ, we have

E[Ỹ ] = E[Y ]Γ and ||Ỹ1 − γ||2 + ||Ỹ2||2 = ||Y − βXT ||2.

Therefore
min
γ
||Ỹ1 − γ||2 + ||Ỹ2||2 = min

β
||Y − βXT ||2,
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or
||Ỹ2||2 = ||Y − β̂XT ||2,

where β̂ is the least square estimator, i.e., any solution to βXTX = Y X. If the inverse matrix exists, then

β̂ = Y X(XTX)−1.

Similarly,
||Y11||2 + ||Ỹ2||2 = min

β:βLT =0
||Y − βXT ||2,

Denote by β̂H the value of β that leads to this minimum. Then

W =
(||Y − βHX

T ||2 − ||Y − βXT ||2)/s
||Y − βXT ||2/(n− r)

.

Examples.

1. (One-way analysis of variance (ANOVA)). Let Yij , j = 1, · · · , ni, i = 1, · · · ,m, be independent
N(µi, σ2) random variables. Consider the hypothesis test

H : µi = · · · = µm versus A : µi 6= µk for some i 6= k.

Note that (Ȳ1,·, · · · Ȳm,·) is the least squares estimate of (µ1, · · · , µm) where Ȳi· =
∑ni

j=1 Yij/ni. The
least squares estimate under H for the grand mean is

Ȳ =
1
n

m∑
i=1

ni∑
j=1

Yij , n =
m∑
i=1

ni.

The sum of squares of the residuals

SSR = ||Y − βXT ||2 =
m∑
i=1

ni∑
j=1

(Yij − Ȳi·)2,

The total sum of squares

SST = ||Y − βHX
T ||2 =

m∑
i=1

ni∑
j=1

(Yij − Ȳ )2,

A little algebra shows that

SSA = SST − SSR =
m∑
i=1

ni(Ȳi· − Ȳ )2.

Thus,

W =
SSA/(m− 1)
SSR/(n−m)

.
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2. (Two-way balanced analysis of variance) Let Yijk, i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , c, be indepen-
dent N(µij , σ2) random variables where

µij = µ+ αi + βj + γij ,
a∑
i=1

αi =
b∑
j=1

βj =
a∑
i=1

γij =
b∑
j=1

γij = 0.

Typically we consider the following hypotheses:

H : αi = 0 for all i versus A : αi 6= 0 for some i.

H : βj = 0 for all i versus A : βj 6= 0 for some j.

H : γij = 0 for all i, j versus A : γi,j 6= 0 for some i, j.

In applications,

• αi’s are the effects of factor A,

• βj ’s are the effects of factor B,

• γij ’s are the effects of the interaction of factors A and B.

Using dot to indicate averaging over the indicated subscript, we have the following least squares
estimates:

α̂i = Ȳi·· − Ȳ···, β̂i = Ȳ·j· − Ȳ···, γ̂ij = (Ȳij· − Ȳi··)− (Ȳ·j· − Ȳ···).

Let

SSR =
a∑
i=1

b∑
j=1

c∑
k=1

(Yijk − Ȳij·)2, SSA = bc
a∑
i=1

α̂2
i , SSB = ac

b∑
j=1

β̂2
j , SSC = c

a∑
i=1

b∑
j=1

γ2
ij .

Then the UMPI tests for the respective hypotheses above are

SSA/(a− 1)
SSR/((c− 1)ab)

,
SSB/(b− 1)

SSR/((c− 1)ab)
,

SSC/((a− 1)(b− 1))
SSR/((c− 1)ab)

.

6.6 The Bayesian Approach

The Bayesian solution to a hypothesis-testing problem with a 0− 1− c loss function is straightfoward. The
posterior risk from choosing the action a = 1 is

cP{v ∈ VH |X = x},

and posterior risk from choosing the action a = 0 is

P{v ∈ VA|X = x}.

Thus, the optimal decision is to choose a = 1 if

cP{v ∈ VH |X = x} < P{v ∈ VA|X = x},

86



or
P{v ∈ VH |X = x} < 1

1 + c
.

In classical hypothesis testing with 0− 1− c loss function, we have

L(v, δ(x)) = cIVH
(v)φ(x) + IVA

(v)(1− φ(x))
L(θ, δ(x)) = cPθ,V (VH)φ(x) + (1− Pθ,V (VH)(1− φ(x)))

= φ(x)((c+ 1)Pθ,V (VH)− 1) + 1− Pθ,V (VH)
R(θ, φ) = βφ(θ)((c+ 1)Pθ,V (VH)− 1) + 1− Pθ,V (VH)

Now define
ΩH = {θ : Pθ,V (VH) ≥ 1

1 + c
}, ΩA = ΩcH ,

e(θ) =
{

1− Pθ,V (VH) if θ ∈ ΩH ,
−Pθ,V (VH) if θ ∈ ΩA.

d(θ) = |(c+ 1)Pθ,V (VH)− 1|.

The risk function above is exactly equal to e(θ) plus d(θ) time the risk function from a 0− 1 loss for the
hypothesis

H : Θ ∈ ΩH versus A : Θ ∈ ΩA.

If the power function is continuous at that θ such that

Pθ,V (VH) =
1

1 + c
,

In replacing a test concerning an abservable V with a test concerning a distribution of V given Θ, the
predictive test function problem has been converted into a classical hypotheis testing problem.

Example. If X is N(θ, 1) and ΘH = {0}, then conjugate priors for Θ of the from N(θ0, 1/λ0) assign
both prior and posterior probabilities to ΩH .

Thus, in considering the hypothesis

H : Θ = θ0 versus A : Θ 6= θ0,

we must choose a prior that assigns a positive probability p0 to {θ0}. Let λ be a prior distribution on Ω\{θ0}
for the conditional prior given Θ 6= θ0. Assume that Pθ << ν for all θ, then the joint density with respect
to ν × (δθ0 + λ) is

fX,Θ(x, θ) =
{
p0fX|Θ(x|θ) if θ = θ0,
(1− p0)fX|Θ(x|θ) if θ 6= θ0

The marginal density of the data is

fX(x) = p0fX|Θ(x|θ0) + (1− p0)
∫

Ω

fX|Θ(x|θ) λ(dθ).
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The posterior distribution of Θ has density with respect to the sum of λ+ δθ0 is

fΘ|X(θ|x) =

{
p1 if θ = θ0,

(1− p1)
fX|Θ(x|θ)∫

Ω
fX|Θ(θ|x) λ(θ)

if θ 6= θ0.

Here,

p1 =
fX|Θ(x|θ)
fX(x)

.

the posterior probability of Θ = θ0. To obtain the second term, note that

1− p1 =
(1− p0)

∫
Ω
fX|Θ(x|θ) λ(dθ)
fX(x)

or
1− p0

fx(x)
=

1− p1∫
Ω
fX|Θ(x|θ) λ(dθ)

.

Thus,
p1

1− p1
=

p0

1− p0

fX|Θ(x|θ)∫
Ω
fX|Θ(x|θ) λ(dθ)

.

In words, we say that the posterior odds equals the prior odds times the Bayes factor.

Example. If X is N(θ, 1) and ΩH = {θ0}, then the Bayes factor is

e−θ
2
0/2∫

Ω
ex(θ−θ0)−θ2/2) λ(dθ)

.

If λ(−∞, θ0) > 0, and λ(θ0,∞) > 0, then the denominator in the Bayes factor is a convex function of x and
has limit ∞ as x→ ±∞. Thus, we will reject H if x falls outside some bounded interval.

The global lower bound on the Bayes factor,

fX|Θ(x|θ)
supθ 6=θ0 fX|Θ(x|θ)

,

is closely related to the likelihood ratio test statistic.

In the example above, the distribution that minimizes the Bayes factor is λ = δx, giving the lower bound

exp(−(x− θ0)2/2).

In the case that x = θ0 +z0.025 the Bayes factor is 0.1465. Thus, rejection in the classical setting at α = 0.05
corresponds to reducing the odds against the hypothesis by a factor of 7.

The Bayes factor for λ, a N(θ0, τ2), is√
1 + τ2 exp

(
− (x− θ0)2τ2

2(1 + τ2)

)
.

The smallest Bayes factor occurs with value

τ =
{

(x− θ0)2 − 1 if |x− θ0| > 1,
0 otherwise.
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with value 1 if |x− θ0| ≤ 1, and
|x− θ0| exp

(
−(x− θ0)2 + 1)/2

)
,

if |x− θ0| > 1. At x = θ0 + z0.025, this minimizing factor is 0.4734.

Example. Consider a 0 − 1 − c loss function and let X be Pois(θ) and let Θ have a Γ(a, b) prior.
Then the posterior, given X = x is Γ(a+ x, b+ 1). For fixed second parameter, the Γ distributions increase
stochastically in the first parameter. For the hypothesis,

H : Θ ≤ 1 versus A : Θ > 1.

P{Θ ≤ 1|X = x} < 1
1 + c

if and only if x ≥ x0 for some x0.
For the improper prior with a = 0 and b = 0 (corresponding to the density dθ/θ) and with c = 19, the

value of x0 is 4. This is the same as the UMP level α = 0.05 test except for the randomization at x = 3.

Example. Consider a 0− 1− c loss function and let Y be Exp(θ). Let X = −Y so that θ is the natural
parameter. For the hypothesis

H : Θ ≤ 1 or Θ ≥ 2 versus A : 1 < Θ < 2,

use the improper prior having density 1/θ with respect to Lebesgue measure. Then, given Y = y, the
posterior distribution of Θ is Exp(y). To find the formal Bayes rule, note that the posterior probability that
H is true is

1− e−y + e−2y.

Setting this equal to 1/(1 + c) we may obtain zero, one, or two solutions. In the cases of 0 or 1 solution, the
formal Bayes always accepts H. For the case of 2 solutions, c1 and c2,

1− e−c1 + e−2c1 = 1− e−c2 + e−2c2 =
1

1 + c
,

or
e−c1 − e−c2 = e−2c1 − e−2c2 .

This equates the power function at θ = 1 with the power function at θ = 2. If α is the common value, then
the test is UMP level α.

Example. Let X be N(µ, 1) and consider two different hypotheses:

H1 : M ≤ −0.5 or M ≥ 0.5 versus A1 : −0.5 < M < 0.5,

and
H2 : M ≤ −0.7 or M ≥ 0.51 versus A2 : −0.7 < M < 0.51.

A UMP level α = 0.05 test of H1 rejects H1 if

−0.071 < X < 0.071.
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A UMP level α = 0.05 test of H2 rejects H2 if

−0.167 < X < −0.017.

Because ΩH2 ⊂ ΩH1 , then one may argue that rejection of H1 should a fortiori imply the rejection of H2.
However, if

−0.017 < X < 0.071,

then we would reject H1 at the α = 0, 05 level but accept H2 at the same level.
This lack of coherence cannot happen in the Bayesian approach using levels for posterior probabilities.

For example, suppose that we use a improper Lebesgue prior for M , then the posterior probability for M is
N(x, 1). The α = 0.05 test for H1 rejects if the posterior probability of H1 is less than 0.618. The posterior
probability of H2 is less than 0.618 whenver x ∈ (−0.72, 0.535). Note that this contains the rejection region
of H2.

Example. Let X be N(θ, 1) and consider the hypothesis

H : |Θ− θ0| ≤ δ versus A : |Θ− θ0| > δ

Suppose that the prior is N(θ0, τ2). Then the posterior distribution of Θ given X = x is

N(θ1,
τ2

1 + τ2
), θ1 =

θ0 + xτ2

1 + τ2
.

If we use a 0− 1− c loss function, the Bayes rule is to reject H if the posterior probability

∫ θ0+δ

θ0−δ

√
1 + 1/τ2

2π
exp

(
−1

2
(1 +

1
τ2

)(θ − θ1)2
)
dθ =

∫ θ0−θ1+δ

θ0−θ1−δ

√
1 + 1τ2

2π
exp(−1

2
(1 +

1
τ2

)θ2) dθ

is low. This integral is a decreasing function of

|θ0 − θ1| = |θ0 −
θ0 + xτ2

1 + τ2
| = τ2

1 + τ2
|θ0 − x|.

Thus, the Bayes rule is to reject H if
|θ0 − x| > d

for some d. This has the same form as the UMPU test.
Alternatively, suppose that

P{Θ = θ0} = p0 > 0,

and, conditioned on Θ = θ0, Θ is N(θ0, τ2). Then the Bayes factor is√
1 + τ2 exp

(
− (x− θ0)2τ2

2(1 + τ2)

)
.

Again, the Bayes rule has the same form as the UMPU test.
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If, instead we choose the conditional prior Θ is N(θ̃, τ2) whenever Θ 6= θ0. This gives rise to a test that
rejects H whenever

|((1− τ2)θ0 − θ̃)/τ2 − x| > d.

This test is admissible, but it is not UMPU if θ̃ 6= θ0. Consequently, the class of UMPU tests is not complete.

Example. Let X be Bin(n, p). Then θ = log(p/(1 − p)) is the natural parameter. If we choose the
conditional prior for P to be Beta(α, β), then the Bayes factor for ΩH = {p0} is

px0(1− p0)n−x
∏n−1
i=0 (α+ β + i)∏x−1

i=0 (α+ i)
∏n−x−1
j=0 (β + j)

.
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7 Estimation

7.1 Point Estimation

Definition. Let Ω be a parameter space and let g : Ω → G be a measurable function. A measurable function

φ : X → G′ G ⊂ G′,

is called a (point) estimator of g(θ). An estimator is called unbiased if

Eθ[φ(X)] = g(θ).

If G′ is a vector space, then the bias
bφ(θ) = Eθ[φ(X)]− g(θ).

Example.

1. For X1, · · · , Xn independent N(µ, σ) random varibles,

X̄ =
1
n

n∑
i=1

Xi

is an unbiased estimator of µ.

2. Let X be an Exp(θ) random variable. For φ to be an unbiased estimator of θ, then

θ = Eθ[φ(X)] =
∫ ∞

0

φ(x)θe−θx dx,

for all θ. Dividing by θ and differentiating the Riemann integral with respect to θ yields

0 =
∫ ∞

0

xφ(x)θe−θx dx =
1
θ
Eθ[Xφ(X)].

Because X is a complete sufficient statistic

φ(X) = 0 a.s. Pθ for all θ.

This contradicts the assumption that φ is unbiased and consequently θ has no unbiased estimators.

Using a quadratic loss function, and assuming that G′ is a subset of R, the risk function of an estimator
φ is

R(θ, φ) = Eθ[(g(θ)− φ(X))2] = bφ(θ)2 + Varθφ(X).

This suggests the following criterion for unbiased estimators.
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Definition. An unbiased estimator φ is uniformly minimum variance unbiased estimator (UMVUE) if
φ(X) has finite variance for all θ and, for every unbiased estimator ψ,

Varθφ(X) ≤ Varθψ(X) for all θ.

Theorem. (Lehmann-Scheffé) Let T be a complete sufficient statistic. Then all unbiased estimators
of g(θ) that are functions of T alone are equal a.s. Pθ for all θ ∈ Ω.

If an unbiased estimator is a function of a complete sufficient statistic, then it is UMVUE.

Proof. Let φ1(T ) and φ2(T ) be two unbiased estimators of g(θ), then

Eθ[φ1(T )− φ2(T )] = 0 for all θ.

Because T is complete,
φ1(T ) = φ2(T ), a.s. Pθ.

If φ(X) is an unbiased estimator with finite variance then so is φ̃(T ) = Eφ[φ(X)|T ]. The conditional
variance formula states that

Varθ(φ̃(T )) ≤ Varθ(φ(X)).

and φ̃(T ) is UMVUE.

Example. Let X1, · · · , Xn be independent N(µ, σ2) random variables. Then (X̄, S2) is a complete
sufficent statistic. The components are unbiased estimators of µ and σ2 respectively. Thus, they are UMVUE.

Define
U = {U : Eθ[U(X)] = 0, for all θ}.

If δ0 is an unbiased estimator of g(θ), then every unbiased estimator of g(θ) has the form δ0 + U , for
some U ∈ U .

Theorem. An estimator δ is UMVUE of Eθ[δ(X)] if and only if, for every U ∈ U , Covθ(δ(X), U(X)) = 0.

Proof. (sufficiency) Let δ1(X) be an unbiased estimator of Eθ[δ(X)]. Then, there exists U ∈ U so that
δ1 = δ + U . Because Covθ(δ(X), U(X)) = 0,

Varθ(δ1(X)) = Varθ(δ(X)) + Varθ(U(X)) ≥ Varθ(δ(X)),

and δ(X) is UMVUE.

(necessity) For λ ∈ R define the unbiased estimator

δλ = δ + λU.

Then
Varθ(δ(X)) ≤ Varθ(δλ(X)) = Varθ(δ(X)) + 2λCovθ(δ(X), U(X)) + λ2Varθ(U(X)),
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or
λ2Varθ(U(X)) ≥ −2λCovθ(δ(X), U(X)).

This holds for all λ and θ if and only if Covθ(δ(X), U(X)) = 0.

Example. Let Y1, Y2, · · · be independent Ber(θ) random variables. Set

X =
{

1 if Y1 = 1
number of trials before 2nd failure otherwise.

Suppose that we observe X. Then

fX|Θ(x|θ) =
{
θ if x = 1
θx−2(1− θ)2 if x = 2, 3, · · · .

(Note that the failures occur on the first and last trial.)
Define the estimator

δ0(x) =
{

1 if x = 1
0 if x = 2, 3, · · · .

Then, δ0 is an unbiased estimator of Θ. To try to find an UMVUE estimator, set

0 = Eθ[U(X)]

= U(1)θ +
∞∑
x=2

θx−2(1− θ)2U(x)

= U(2) +
∞∑
k=1

θk(U(k)− 2U(k + 1) + U(k + 2))

Then U(2) = 0 and U(k) = (2− k)U(1) for all k ≥ 3. Thus, we can characterize U according to its value
at t = −U(1). Thus,

U = {Ut : Ut(x) = (x− 2)t, for all x}.

Consequently, the unbiased estimators of Θ are

δt(x) = δ0(x) + (x− 2)t.

The choice that is UMVUE must have 0 covariance with every Us ∈ U . Thus, for all s and θ,

0 =
∞∑
x=1

fX|Θ(x|θ)δt(x)Us(x) = θ(−s)(1− t) +
∞∑
x=2

θx−2(1− θ)2ts(x− 2)2.

or
∞∑
x=2

tsθx−2(x− 2)2 = s(1− t)
θ

(1− θ)2
= s(1− t)

∞∑
k=1

kθk.

These two power series must be equal term by term. Thus,

s(1− t)k = tsk2 or 1− t = tk.
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Thus, there is no UMVUE.
Given θ0, there is a locally minimum variance unbiased estimator.

Theorem. (Cramér-Rao lower bound) Suppose that the three FI regularity conditions hold and let
IX(θ) be the Fisher information. Suppose that IX (θ) > 0, for all θ. Let φ(X) be a real valued statistic
satisfying E|φ(X)| < ∞. for all θ and

∫
φ(x)fX|Θ(x|θ) ν(dx) can be differentiated under the integral sign.

Then,

Varθ(φ(X)) ≥
( ddθEθφ(X))2

IX(θ)
.

Proof. Define

B = {x :
∂fX|Θ(x|θ)

∂θ
fails to exist for some θ} and C = {x : fX|Θ(x|θ) > 0}.

Then ν(B) = 0 and C is independent of θ. Let D = C ∩Bc, then, for all θ,

1 = Pθ(D) =
∫
D

φ(x)fX|Θ(x|θ) ν(dx).

Taking the derivative, we obtain

0 =
∫
D

∂fX|Θ(x|θ)/∂θ
fX|Θ(x|θ)

fX|Θ(x|θ) ν(dx) = Eθ[
∂

∂θ
log fX|Θ(X|θ)].

Using this fact, we also have

d

dθ
Eθ[φ(X)] =

∫
D

φ(x)
∂

∂θ
fX|Θ(x|θ) ν(dθ)

= Eθ[φ(X)
∂

∂θ
log fX|Θ(X|θ)] = Eθ[(φ(X)− Eθ[φ(X)])

∂

∂θ
log fX|Θ(X|θ)].

By the Cauchy-Schwartz inequality,(
d

dθ
Eθ[φ(X)]

)2

≤ Varθ(φ(X))IX(θ).

Now, divide by IX(θ).

For an unbiased estimator, d
dθEθ[φ(X)] = 1.

Equality in the Cauchy-Schwartz occurs if and only if the estimator φ(X) and the score function
∂ log fX|Θ(X|θ)/∂θ are linearly related.

∂

∂θ
log fX|Θ(x|θ) = a(θ)φ(x) + d(θ) a.s. Pθ.

or
fX|Θ(x|θ) = c(θ)h(x) exp (π(x)φ(x)) ,

the density of an exponential family with sufficient statistic φ.

Examples.
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1. For X a N(θ, σ2
0) random variable and φ(x) = x,

IX (θ) = 1/θ20
and the Cramér-Rao bound is met.

2. For X an Exp(λ) random variable, set θ = 1/λ. Then

fX|Θ(x|θ) =
1
θ
e−x/θI(0,∞)(x),

∂

∂θ
log fX|Θ(x|θ) = −1

θ
+

x

θ2
.

Thus φ must be a linear function to achieve the Cramér-Rao bound. The choice φ(x) = x is unbiased
and the bound is achieved.

3. td(θ, 1)-family of distributions has density

fX|Θ(x|θ) =
Γ((d+ 1)/2)
Γ(d/2)

√
dπ

(
1 +

1
d
(x− θ)2

)−(d+1)/2

with respect to Lebesgue measure. In order for the variance to exist, we must have that d ≥ 3. Check
that

∂2

∂θ2
log fX|Θ(x|θ) = −d+ 1

d

1− (x− θ)2/d
(1 + (x− θ)2/d)2

.

Then

IX (θ) = −Eθ[
∂2

∂θ2
log fX|Θ(X|θ)] =

Γ((d+ 1)/2)
Γ(d/2)

√
dπ

d+ 1
d

∫
1− (x− θ)2/d

(1 + (x− θ)2/d)(d+5)/2
dx.

Make the change of variables
z√
d+ 4

=
x− θ√
d

to obtain

IX (θ) =
Γ((d+ 1)/2)
Γ(d/2)

√
dπ

d+ 1
d

√
d

d+ 4

∫
1− z2/(d+ 4)

(1 + z2/(d+ 4))(d+5)/2
dz.

Multiplication of the integral by
Γ((d+ 5)/2)

Γ((d+ 4)/2)
√

(d+ 4)π
gives

E

[
1−

T 2
d+4

d+ 4

]
= 1− 1

d+ 4
d+ 4
d+ 2

=
d+ 1
d+ 2

.

Therefore,

IX (θ) =
Γ((d+ 1)/2)
Γ(d/2)

√
dπ

d+ 1
d

√
d

d+ 4
Γ((d+ 4)/2)

√
(d+ 4)π

Γ((d+ 5)/2)
d+ 1
d+ 2

=
Γ((d+ 1)/2)

Γ(d/2)Γ((d+4)/2)
Γ((d+5)/2)

d+ 1
d

d+ 1
d+ 2

=
(d+ 2)/2 d/2

(d+ 3)/2 (d+ 1)/2
d+ 1
d

d+ 1
d+ 2

=
d+ 1
d+ 3
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Theorem. (Chapman-Robbins lower bound). Let

m(θ) = Eθ[φ(X)], S(θ) = suppfX|Θ(·|θ).

Assume for each θ ∈ Ω there exists θ′ 6= θ such that S(θ′) ⊂ S(θ). Then

Varθ(φ(X)) ≥ sup
{θ′:S(θ′)⊂S(θ)}

(
(m(θ)−m(θ′))2

Eθ[(fX|Θ(X|θ′)/fX|Θ(X|θ)− 1)2]

)
.

Proof. Define

U(X) =
fX|Θ(X|θ′)
fX|Θ(X|θ)

− 1.

Then Eθ[U(X)] = 1− 1 = 0. Choose θ′ so that S(θ′) ⊂ S(θ), then√
Varθ(φ(X))

√
Varθ(U(X)) ≥ |Covθ(U(X), φ(X))|

= |
∫
S(θ)

(φ(x)fX|Θ(x|θ′)− φ(x)fX|Θ(x|θ)) ν(dx)| = |m(θ)−m(θ′)|.

Examples.

1. Let X1, · · · , Xn be independent with density function

fX|Θ(x|θ) = exp(θ − x)I(θ,∞)

with respect to Lebesgue measure. Thus, S(θ′) ⊂ S(θ) whenever θ′ ≥ θ.

U(X) = exp(n(θ′ − θ))I(θ′,∞)( min
1≤i≤n

Xi)− 1,

and
Eθ[U(X)2] = (exp(2n(θ′ − θ))− 2 exp(n(θ′ − θ)))Pθ{ min

1≤i≤n
Xi ≥ θ′}+ 1.

Because
Pθ{ min

1≤i≤n
Xi ≥ θ′} = Pθ{X1 ≥ θ′}n = exp(−n(θ′ − θ)),

we have
Eθ[U(X)2] = exp(n(θ′ − θ))− 1.

Thus, the Chapman-Robbins lower bound for an unbiased estimator is

Varθ(φ(X)) ≥ sup
θ′≥θ

(
(θ − θ′)2

exp(n(θ′ − θ))− 1

)
=

1
n2

min
t≥0

(
t2

et − 1

)
.
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2. For X a U(0, θ) random variable, S(θ′) ⊂ S(θ) whenever θ′ ≤ θ.

U(X) =
θ′−1I(0,θ′)(X)
θ−1I(0,θ)(X)

− 1 =
θ

θ′
I(0,θ′)(X)− 1,

and
Eθ[U(X)2] = ((

θ

θ′
)2 − 2

θ

θ′
)Pθ{X ≤ θ′}+ 1 =

θ

θ′
− 1.

Thus, the Chapman-Robbins lower bound for an unbiased estimator is

Varθ(φ(X)) ≥ sup
θ′≤θ

(
(θ − θ′)2

(θ/θ′)− 1

)
== sup

θ′≤θ
θ′(θ − θ′) =

θ2

4

Lemma. Let φ(X) be an unbiased estimator of g(θ) and let ψ(x, θ), i = 1, · · · , k be functions that are
not linearly related. Set

γi = Covθ(φ(X), ψi(X, θ)), Cij = Covθ(ψi(X, θ), ψj(X, θ)).

Then Varθφ(X) ≥ γTC−1γ.

Proof. The covariance matrix of (φ(X), ψ1(X), · · · , ψk(X)) is(
Varθφ(X) γT

γ C

)
Use the vector (1, αT ) to see that

Varθφ(X) + αT γ + γTα+ αTCα ≥ 0.

Now the inequality follows by taking α = −C−1γ

Corollary (Bhattacharyya system of lower bounds). In addition to the hypotheses for the Cramér-
Rao lower bound, assume that k partial derivatives can be performed under the integral sign. Define

γi(θ) =
di

dθi
Eθ[φ(X)], Jij(θ) = Covθ(ψi(X, θ), ψj(X, θ)), ψi(x, θ) =

1
fX|Θ(x|θ)

∂i

∂θi
fX|Θ(x|θ).

Assume that J(θ) is a nonsingular matrix, then

Varθ(φ(X)) ≥ γ(θ)TJ(θ)−1γ(θ).

Proof. Note that by continuing to differentiate, we obtain

di

dθi
Eθ[φ(X)] = Covθ(φ(X),

∂i

∂θi
fX|Θ(X|θ)).

98



Now, apply the lemma.

Example. Let X be an Exp(λ) random variable. Set θ = 1/λ. Then, with respect to Lebesgue measure
on (0,∞), X has density

fX|Θ(x|θ) =
1
θ
e−x/θ.

Thus,
∂

∂θ
fX|Θ(x|θ) =

(
−1
θ

+
x

θ2

)
fX|Θ(x|θ), ∂2

∂θ2
fX|Θ(x|θ) =

(
2
θ2
− 4x
θ3

+
x2

θ5

)
fX|Θ(x|θ).

With, φ(x) = x2,
Eθ[φ(X)] = 2θ2 and Varθ(φ(X)) = 20θ4.

Because
IX (θ) =

1
θ2

and
d

dθ
Eθ[φ(X)] = 4θ.

the Cramér-Rao lower bound on the variance of φ(X) is 16θ4. However,

J(θ) =
(

1
θ2 0
0 4

θ2

)
, γ(θ) =

(
4θ
4

)
.

Thus,
γ(θ)TJ(θ)−1γ(θ) = 20θ4

and the Bhattacharayya lower bound is achieved.

Corollary (Multiparameter Cramér-Rao lower bound.) Assume the FI regularity conditions
and let IX (θ) be a positive definite Fisher information matrix. Suppose that Eθ|φ(X)| < ∞ and that∫
φ(x)fX|Θ(x|θ) ν(dx) can be differentiated twice under the integral sign with respect to the coordinates of

θ. Set
γi(θ) =

∂

∂θi
Eθ[φ(X)].

Then
Varθ(φ(X)) ≥ γ(θ)TIX (θ)−1γ(θ).

Proof. Apply the lemma, noting that

∂

∂θi
Eθ[φ(X)] = Covθ(φ(X),

∂

∂θi
log fX|Θ(X|θ)).

Example. Let X be N(µ, σ2). Then

IX =
(

2
σ2 0
0 1

σ2

)
.
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If φ(X) = X2 then Eθ[φ(X)] = µ2 + σ2. Then

γ(µ, σ) = (2µ, 2σ) γ(θ)TIX (θ)−1γ(θ) = 4µ2σ2 + 2σ4.

This equals Varθ(φ(X)) and so the Cramér-Rao bound is met.

Definition. Let X be a sample from Pθ, θ ∈ Ω and assume that Pθ has density fX|Θ(·|θ) with respect
to a σ-finite measure ν.

1. If X = x is observed, then the function

L(θ) = fX|Θ(x|θ)

is called the likelihood function.

2. θ̂ in the closure of Ω is called the maximum likelihood estimate of θ if

L(θ̂) = max
θ∈Ω̄

fX|Θ(x|θ).

Viewed as a function of x, L(θ̂) is called the maximum likelihood estimator of θ.

Theorem. Let g : Ω → G be measurable. Suppose that there exists a space U and a function g∗ so that

(g, g∗) : Ω → G× U

is a one-to-one measurable function. If θ̂ is a maximum likelihood estimator of θ, then g(θ̂) is a maximum
likelihood estimator of g(θ).

Proof. For ψ in the range of (g, g∗), set the likelihood

fX|Ψ(x|ψ) = fX|Θ(x|(g, g∗)−1(ψ)).

Fix x and let fX|Θ(x|θ) assume its maximum at θ̂. Define ψ̂ = (g, g∗)(θ̂). Then, the maximum occurs at
(g, g∗)−1(ψ̂).

If the maximum of fX|Ψ(x|ψ) occurs at ψ = ψ0, then

fX|Θ(x|(g, g∗)−1(ψ0)) = fX|Ψ(x|ψ0) ≥ fX|Ψ(x|ψ̂) = fX|Θ(x|θ̂).

Because the last term is at least as large as the first, we have that ψ̂ provides a maximum.
Consequently, (g, g∗)(θ̂) is a maximum likelihood estimate of ψ and so g(θ̂) is the MLE of g(θ), the first

coordinate of ψ.

Example. Let X1 · · · , Xn be independent N(µ, σ2), then the maximum likelihood estimates of (µ, σ)
are

X̄ and
1
n

n∑
i=1

(Xi − X̄)2.

For g(m) = m2, define g∗(m,σ) = (sign(µ), σ), to see that X̄2 is a maximum likelihood estimator of m2.
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For the maximum, we have that L(θ̂) > 0. Thus, we can look to maximize logL(θ). In an exponential
family, using the natural parameter,

logL(θ) = log c(θ) + 〈x, θ〉.

Thus, if ∂L(θ)/∂θi = 0,

xi =
∂

∂θi
log c(θ) = Eθ[Xi],

and θ̂i is chosen so that xi = Eθ[Xi].

Example. Let X1 · · · , Xn be independent N(µ, σ2), then the natural parameter for this family is

(θ1, θ2) = (
µ

σ2
,− 1

2σ2
).

The natural sufficient statistic is

(nX̄,
n∑
i=1

X2
i ).

Also,

log c(θ) =
n

2
log(−2θ2) + n

θ21
4θ2

.

Thus,
∂

∂θ1
log c(θ) =

θ1
2θ2

,
∂

∂θ2
log c(θ) =

n

2θ2
− n

θ21
4θ22

.

Setting these equal to the negative of the coordinates of the sufficient statistic and solving for (θ1, θ2) gives

θ̂1 =
nX̄∑n

i=1(Xi − X̄)2
, θ̂2 = − n

2
∑n
i=1(Xi − X̄)2

,

and

µ̂ = − θ̂1

2θ̂2
= X̄, σ̂2 = − 1

2θ̂2
=

1
n

n∑
i=1

(Xi − X̄)2.

Given a loss function, the Bayesian method of estimation uses some fact about the posterior distribution.
For example, if Ω is one dimensional, and we take a quadratic loss function, the the Bayes estimator is the
posterior mean.

For the loss function L(θ, a) = |θ − a| the rule is a special case of the following theorem.

Theorem. Suppose that Θ has finite posterior mean. For the loss function

L(θ, a) =
{
c(a− θ) if a ≥ θ,
(1− c)(θ − a) if a < θ,

then a formal Bayes rule is any 1− c quantile of the posterior distribution of Θ.
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Proof. Let ã be a 1− c quantile of the posterior distribution of Θ. Then

P{Θ ≤ ã|X = x} ≥ 1− c, P{Θ ≥ ã|X = x} ≥ c.

If a > ã, then

L(θ, a)− L(θ, ã) =

 c(a− ã) if ã ≥ θ,
c(a− ã)− (θ − ã) if a ≥ θ > ã,
(1− c)(ã− a) if θ > a,

or

L(θ, a)− L(θ, ã) = c(a− ã) +

 0 ifã ≥ θ,
(ã− θ) if a ≥ θ > ã,
(ã− a) if θ > a,

Thus, the difference in posterior risk is

r(a|x)− r(̃|x) = c(a− ã) +
∫

(ã,a]

(ã− θ)fΘ|X(θ|x) λ(dx) + (ã− a)P{Θ > a|X = x}

≥ c(a− ã) + (ã− a)P{Θ > a|X = x} = (a− ã)(c− P{Θ > a|X = x}) ≥ 0.

Similarly, if a < ã, then

L(θ, a)− L(θ, ã) = c(a− ã) +

 0 if ã ≥ θ,
(θ − a) if ã ≥ θ > a,
(ã− a) if θ > a,

and
r(a|x)− r(̃|x) ≥ (ã− a)(P{Θ > a|X = x} − c) ≥ 0.

Consequently, ã provides the minimum posterior risk.

Note that if c = 1/2, then the Bayes is to take the median

7.2 Nonparametric Estimation

Let P0 be a collection of distributions on a Borel space (X ,B) and let

T : P0 → Rk

be a functional. If we collect data X1, · · · , Xn, then we may estimate P ∈ P0 by its empirical distribution
Pn. In this circumstance, the natural estimator of T (P ) is T (Pn).

For example, if

T (P ) =
∫
X
ψ(x) P (dx),

then

T (Pn) =
∫
X
ψ(x) Pn(dx) =

1
n

n∑
i=1

ψ(Xn).
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Methods of moments techniques are examples of this type of estimator with ψ(x) = xn.
If X ⊂ R, then we can look at the p-th quantile of P .

T (P ) = inf{x : P [x,∞) ≥ p}

Then T (Pn) is the pth sample quantile.

Definition. Let L be a linear topological vector space and let

T : L → Rk

be a functional on L.

1. T is Gâteaux differentiable at Q ∈ L if there is a linear functional L(Q; ·) on L such that for ∆ ∈ L,

lim
t→0

1
t
(T (Q+ t∆)− T (Q)) = L(Q;∆).

2. If L is a metric space with metric ρ, T is Fréchet differentiable at P ∈ L if there is a linear functional
L(P ; ·) on L such that for {Pj ; j ≥ 0} converging to P ,

lim
j→∞

1
ρ(Pj , P )

(T (Pj)− T (P )− L(P ;Pj − P )) = 0.

3. If L is a Banach space with norm || · ||, T is Hadamard differentiable at Q ∈ L if there is a linear
functional L(Q; ·) on L such that for for any sequence of numbers {tj ; j ≥ 0} converging to 0, and
{∆j ; j ≥ 0} converging in norm to ∆,

lim
j→∞

1
tj

(T (Q+ tj∆j)− T (Q))− L(Q;∆j) = 0.

The functional L(Q; ·) is call the differential of T at Q and is sometimes written DT (Q; ·)

One approach to robust estimation begins with the following definition.

Definition. Let P0 be a collection of distributions on a Borel space (X ,B) and let

T : P0 → Rk

be a functional. Let L be the linear span of the distributions in P0 The influence function of T at P is the
Gâteaux derivative

IF (x;T, P ) = DT (P ; δx − P )

for those x for which the limit exists.

Examples.
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1. Let T (P ) be the mean functional, then

T (P + t(δx − P )) = (1− t)T (P ) + tx,

and the influence function
IF (x;T, P ) = x− T (P ).

2. Let F be the cumulative distribution function for P , and let T be the median. Then,

T (P + t(δx − P )) =


F−1( 1/2−t

1−t ) if x < F−1( 1/2−t
1−t )

x if F−1( 1/2−t
1−t ) ≤ x ≤ F−1( 1

2(1−t) )
F−1( 1

2(1−t) ) if x ≤ F−1( 1
2(1−t) ).

If F has a derivative f at the median, then

IF (x;T, P ) =
1

2f(F−1(1/2))
sign(x− F−1(

1
2
)).

Definition. The gross error sensitivity is

γ∗(T, P ) = sup
x∈X

|IF (x;T, P )|.

Example.

1. If T is the mean and the distributions have unbounded support, then

γ∗(T, P ) = ∞.

2. If T is the median, then

γ∗(T, P ) =
1

2f(F−1(1/2))
.

This is one way of arguing that the median is more robust with respect to gross errors than the mean.

We will now discuss some classes of statistical functionals based on independent and identically distributed
observations X1, · · · , Xn. Denote its empirical distribution

Pn =
1
n

n∑
i=1

δXi .

If T is Gâteaux differentiable at P and Pn is an empirical distribution from an i.i.d. sum, then setting
t = n−1/2, and ∆ =

√
n(Pn − P ).

√
n(T (Pn)− T (F )) = DT (P ;

√
n(Pn − P )) + rn

=
1√
n

n∑
i=1

DT (P ; δXi
− P ) + rn

=
1√
n

n∑
i=1

IF (Xi;T, P ) + rn
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We can use the central limit theorem on the first part provided that

E[IF (X1;T, P )] = 0 and σ2
P = Var(IF (X1;T, P )) <∞.

Thus, by Slutsky theorem, as n→∞
√
n(T (Pn)− T (P )) →D X∞

where X∞ is N(0, σ2
P ) provided that

rn →p 0.

Typically, Gâteaux differentiability is too weak to be useful in establishing the necessary convergence in
probability.

Definition. Let P be a distribution on R with cumulative distribution function F and let J be a function
on [0, 1]. An L-functional is defined as

T (P ) =
∫
xJ(F (x)) dF (x).

T (Pn) is called an L-estimator of T (P ).

Examples.

1. If J ≡ 1, then T (Pn) = X̄.

2. If J(t) = 4t− 2, then T (Pn) is the U -statistic called Gini’s mean difference

Un =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |.

3. If J = (b− a)−1I(a,b)(t) for some constants a < b, then T (Pn) is called the trimmed sample mean.

Theorem. Let T be an L-functional, and assume that

suppJ ⊂ [a, b], 0 < a < b < 1.

and that the set
D = {x : J is discontinuous at F (x)}

has Legesgue measure zero. Then T is Fréchet differentiable at P with influence function

IF (x;T, P ) = −J(F (x)) +
∫
F (y)J(F (y)) dy.

Definition. Let P be a probability measure on Rd with cumulative distribution function F and let

r : Rd ×R→ R
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be a Borel function. An M-functional T (P ) is defined to be a solution of∫
r(x, T (P )) P (dx) = min

t∈G

∫
r(x, t) P (dx).

If Pn is the empirical distribution of i.i.d. observations X1, · · · , Xn, then T (Pn) is called an M-estimator
of T (P ).

Assume that ψP (t) = ∂r(x, t)/∂t exists a.e. and

λP (t) =
∫
ψ(x, t) P (dx) =

∂

∂t

∫
r(x, t) P (dx).

Note that λP (T (P )) = 0.

Examples.

1. If r(x, t) = (x − t)p/p, 1 ≤ p ≤ 2, then T (Pn) is call the minimum Lp distance estimator. For p = 2,
T (P ) =

∫
x P (dx) is the mean functional and T (Pn) = X̄, the sample mean. For p = 1, T (Pn) is the

sample median.

2. If P0 is a paramteric family {Pθ : θ ∈ Ω}, with densities {fX|Θ : θ ∈ Ω}. Set

r(x, t) = − log fX|Θ(x|θ).

Then, T (Pn) is a maximum likelihood estimator.

3. The choice
r(x, t) = min{1

2
(x− t)2, C}

and the corresponding T (Pn) gives a trimmed sample mean.

4. The choice

r(x, t) =
{

1
2 (x− t)2 |x− t| ≤ C
C|x− t| − 1

2c
2 |x− t| > C

yields an estimtor T (Pn) that is a type of Winsorized sample mean.

Theorem. Let T be an M-functional and assume that ψ is bounded and continuous and that λP is
differentiable at T (P ) with λ′P (T (P )) 6= 0. Then T is Hadamard differentiable at P with influence function

IF (x;T, P ) =
ψ(x, T (P ))
λ′P (T (P ))

.
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7.3 Set Estimation

Definition. Let
g : Ω → G

and let G be the collection of all subsets of G. The function

R : X → G

is a coefficient γ confidence set for g(θ) if for every θ ∈ Ω

1. {x : g(θ) ∈ R(x)} is measurable, and

2. P ′θ{g(θ) ∈ R(X)} ≥ γ.

The confidence set R is exact if P ′θ{g(θ) ∈ R(X)} = γ for each θ ∈ Ω. If

inf
θ∈Ω

P ′θ{g(θ) ∈ R(X)} > γ,

the confidence set is called conservative.

Related confidence sets to nonrandomized tests gives us the following.

Proposition. Let g : Ω → G.

1. For each y ∈ G, let φy be a level α nonrandomized test of

H : g(Θ) = y versus A : g(Θ) 6= y.

Then R is a coefficient 1− α confidence set for g(θ). The confidence set R is exact if and only if φy is
α similar for all y.

2. Let R be a coeffieicnet 1− α set for g(θ). For each y ∈ G, define

φy(x) =
{

0 if y ∈ R(x),
1 otherwise.

Then, for each y, φy has level α for the hypothesis given above. The test φy is α-similar for all y if
and only if R is exact.

Example. Let X1, · · · , Xn be independent N(µ, σ2). The usual UMP level α test of

H : M = µ0 versus A : M 6= µ0

is
φµ0(x) = 1 if

x̄− µ0

s/
√
n
> t∗

where T−1
n−1(1 − α/2) and Tn−1 is the cumulative distribution function of the tn−1(0, 1) distribution. This

translates into the confidence interval
(x̄− t∗

s√
n
, x̄+ t∗

s√
n

).
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This form of a confidence uses a pivotal quantity. A pivotal is a function

h : X × Ω → R

whose distribution does not depend on the parameter. The general method of forming a confidence set from
a pivotal is to set

R(x) = {θ : h(x, θ) ≤ F−1
h (γ)}

where
Fh(c) = Pθ{h(X, θ) ≤ c}

does not depend on θ.
We can similarly define randomized confidence sets

R∗ : X × G → [0, 1]

and extend the relationship of similar tests and exact confidence sets to this setting.
Note that a nonrandomized confidence set R can be considered as th trivial randomized confidence set

given by
R(x, y) = IR(x)(y).

The concept of a uniformly most powerful test leads us to the following definition.

Definition. Let R be a coefficient γ confidence set for g(θ) and let G be the collection of all subsets of
the range G of g. Let

B : G→ G

be a function such that y /∈ B(y). Then R is uniformly most accurate (UMA) coefficient γ against B if for
each θ ∈ Ω, each y ∈ B(g(θ)) and each γ confidence set R̃ for g(θ),

P ′θ{y ∈ R(X)} ≤ P ′θ{y ∈ R̃(X)}.

If R∗ is a coefficient γ randomized confidence set for g(θ), then R∗ is UMA coefficient γ randomized
against B if for every coefficient γ randomized confidence set R̃∗, for each θ ∈ Ω, each y ∈ B(g(θ)),

Eθ[R∗(X, y)] ≤ Eθ[R̃∗(X, y)].

Theorem. For g(θ) = θ and B : G→ G. Suppose that

B−1(θ) = {θ′ : θ ∈ B(θ′)} 6= ∅

for every θ. Let φθ be a test and define

R∗(x, θ) = 1− φθ(x).
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Then φθ is UMP level α for the test

H : Θ = θ versus A : Θ ∈ B−1(θ)

for all θ if and only if R∗ is UMA coefficient 1− α randomized against B.

Proof. For each θ ∈ Ω let φθ be UMP for the test above and let R̃∗ be a coefficient 1 − α randomized
confidence set. Define a test

φ̃(x) = 1− R̃∗(x, θ′).

Then by the proposition, φ̃ has level α for {θ′} = ΩH . Note that θ′ ∈ B(θ) implies θ ∈ B−1(θ′) and therefore

1− Eθ[R̃∗(X, θ′)] = Eθ[φ̃(X)] = βφ̃(θ) ≤ βφθ′ )
(θ) = Eθ[φθ′(X)] = 1− Eθ[R∗(X, θ′)],

and the result follows.

Conversely, suppose that R∗ is a UMA coefficient 1− α randomized condifence set against B. For each
θ ∈ Ω and ΩH = {θ}, let φ̃θ be a level α test. Define

R̃∗(X, θ) = 1− φ̃θ(X).

Then, R̃∗ is a coefficient 1− α randomized confidence set. Let

Ω̃ = {(θ̃, θ) : θ̃ ∈ Ω, θ ∈ B(θ̃)} = {(θ, θ̃) : θ ∈ Ω, θ̃ ∈ B−1(θ)}.

This uses B−1(θ) 6= ∅ for all θ. Thus, for θ̃ ∈ B−1(θ),

βφθ
(θ̃) = 1− Eθ̃[R

∗(X, θ)] ≥ 1− Eθ̃[R̃
∗(X, θ)] ≥ βφ̃θ

(θ̃)

and therefore φθ is UMP level α for the test

Example. Let X1, · · · , Xn be independent N(µ, 1) random variables. Let

R(X) = (−∞, X̄ +
1√
n
z∗]

where z∗ = Φ−1(1− α). Note that
P ′µ{µ ∈ R(X)} = 1− α,

and R is an exact 1− α confidence set. Now, consider the test

φ(x) = I(−∞,µ+z∗/
√
n)(x̄).

Then
R(x) = {µ : φµ(x) = 0}

and φµ is the UMP level α test of

H : M = µ versus A : M < µ.
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Here,
B−1(µ) = (∞, µ) = {µ̃ : µ ∈ B(µ̃)}, B(µ) = (µ,∞)

and R us UMA coefficient 1−α against B, i.e. if µ̃ < µ, then R has a smaller chance of covering µ̃ than any
other coefficient 1− α confidence set.

Example. (Pratt). Let X1, · · · , Xn be independent U(θ−1/2, θ+1/2) random variables. The minimum
sufficient statistic T = (T1, T2) = (miniXi,maxiXi) has density

fT1,T2|Θ(t1, t2|θ) = n(n− 1)(t2 − t2)n−2, θ − 1
2
≤ t1 ≤ t2 ≤ θ +

1
2

with respect to Lebesgue measure.
Let’s look to find the UMA coefficient 1−α confidence set against B(θ) = (−∞, θ). Thus, for each θ, we

look to find the UMP level α test for

H : Θ ≤ θ versus A : Θ > θ

to construct the confidence set. Pick θ̃ > θ and considering the inequality

fT1,T2|Θ(t1, t2|θ̃) > kfT1,T2|Θ(t1, t2|θ)

from the Neyman-Pearson lemma.

1. For k < 1 and θ < θ̃ < θ + 1, this inequality holds if

t1 > θ̃ − 1
2

or if t2 > θ +
1
2
.

2. For k =1, then the densities are equal on the intersections of their supports.

3. If θ̃ ≥ θ + 1, then the inequality holds if for

t1 > θ̃ +
1
2
.

For a size α test, we take

φ(t1, t2) =
{

1 if t2 > θ + 1
2 or t1 > θ + 1

2 − α1/n

0 if t2 ≤ θ + 1
2 and t1 > θ + 1

2 − α1/n.

To check that it is most powerful for each θ̃ > θ,

1. take k = 1 if θ̃ − 1/2 < θ + 1/2− α1/n, and

2. take k = 0 if θ̃ − 1/2 < θ + 1/2− α1/n.

Set
T ∗ = max{T1 − 1/2 + α1/n, T2 − 1/2},

then the UMA coefficient 1− α confidence set against B is [T ∗,∞). Note that
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1. Θ ≥ T2 − 1/2, and

2. T ∗ ≤ T2 − 1/2 whenever T1 − 1/2 + α1/n or T2 − T1 ≥ α1/n Thus, we are 100% confident that Θ ≥ T ∗

rather than 100(1− α)%.

For two-sided or multiparameter confidence sets, we need to extend the concept of unbiasedness.

Definition. Let R be a coefficient γ confidence set for g(θ). Let G be the power set of G and let
B : G→ G be a function so that y /∈ B(y). Then R is unbiased against B if, for each θ ∈ Ω,

P ′θ{y ∈ R(X)} ≤ γ for all y ∈ B(g(θ)).

R is a uniformly most accurate unbiased (UMAU) coefficient γ confidence set for g(θ) against B if its UMA
against B among unbiased coefficient γ confidence sets.

Proposition. For each θ ∈ Ω, let B(θ) be a subset of Ω such that θ /∈ B(θ), and let φθ be a nonran-
domized level α test of

H : Θ = θ versus A : Θ ∈ B−1(θ).

Set
R(x) = {θ : φθ(x) = 0}.

Then R is a UMAU coefficient 1−α confidence set against B if φθ is UMPU level α for the hypothesis above.

In the Bayesian framework, we want to choose a set C such that

Pr{V ∈ C|X = x} = γ.

Some of the approaches in choosing C are:

1. If V has posterior density fV |X(·|x), choose d so that

C = {v : fV |X(v|x) ≥ d}.

This choice, called the highest posterior density (HPD) region, is sensitive to the choice of reference
measure. Indeed, C may be disconnected if fV |X(·|x) is multi-modal.

2. If V is real valued, choose c− and c+ so that

Pr{V ≤ c−|X = x} =
1− γ

2
and Pr{V ≥ c+|X = x} =

1 + γ

2

3. For a given loss function, choose C with the smallest posterior expected loss.

To exhibit the use of the loss function in choosing the confidence set, consider a one-dimenstional param-
eter set Ω. To obtain a bounded connected confidence interval, choose the action space

A = {(a−, a+), a− < a+}
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and the loss function

L(θ, a−, a+) = a+ − a− +

 c−(a− − θ) if θ < a−,
0 if a− ≤ θ ≤ a+,
c+(θ − a+) if a+ < θ.

Theorem. Suppose that the posterior mean of Θ is finite and the loss is as above with c− and c+ at
least 1. Then the formal Bayes rule is the interval between the 1/c− and 1− 1/c+ quantiles of the posterior
distribution of Θ.

Proof. Write the loss function above by L− + L+ where

L−(θ, a−) =
{

(c− − 1)(a− − θ) if a>θ,
(θ − a−) if a≤θ.

and

L+(θ, a+) =
{

(a+ − θ) if a+ ≥ θ,
(c+ − 1)(θ − a+) if a+ < θ.

Because each of these loss functions depends only on one action, the posterior means can be minimized
separately. Recall, in this case that the posterior mean of L−(Θ, a−)/c− is minimized at a− equal to the
1/c− quantile of the posterior. Similarly, the posterior mean of L+(Θ, a+)/c+ is minimized at a+ equal to
the (c+ − 1)1/c+ quantile of the posterior.

7.4 The Bootstrap

The strategy of the bootstap is to say that one can use a calculation performed by using a cumulative
distribution function F̂n obtained from an observed sample as an estimate of the calculation one would like
to perform using F .

Let X = (X1, · · · , Xn) be an i.i.d. sample.

1. If the empirical distriubtion function

F̂n(x) =
1
n

n∑
i=1

I(−∞,x](Xi)

is used, then the method is the nonparametric bootstrap.

2. If Θ̂n is an estimate of Θ and
F̂n(x) = FX1|Θ(x|Θ̂n)

is used, then the method is the parametric bootstrap.

Let F be an appropriate space of cumulative distribution functions and let

R : X × F → R
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be some function of interest, e.g., the difference between the sample median of X and the median of F . Then
the bootstrap replaces

R(X,F ) by R(X∗, F̂n)

where X∗ is an i.i.d. sample of size n from F̂n.

The bootstrap was originally designed as a tool for estimating bias and standard error of a statistic.

Examples.

1. Assume that the sample is real values having CDF F satisfying
∫
x2 dF (x) <∞. Let

R(X,F ) =

(
1
n

n∑
i=1

Xi

)2

−
(∫

x dF (x)
)2

,

then

R(X∗, F̂n) =

(
1
n

n∑
i=1

X∗
i

)2

− (x̄n) ,

where x̄n is the observed sample average. Use

s2n =
1
n

n∑
i=1

(xi − x̄n)2

as an estimate of the variance. Now

E[R(X,F )] =
1
n
σ2 and E[R(X∗, F̂n)|X = x] =

1
n
s2n.

2. (Bickel and Freedman) Suppose that X1, · · · , Xn are independent U(0, θ) random variables. Take

R(X,F ) =
n

F−1(1)
(F−1(1)−max

i
Xi).

The distribution of maxiXi/F
−1(1) is Beta(n, 1). This has cumulative distribution function tn. Thus,

Pθ{R(X,F ) ≤ t} = 1− (1− t

n
)n ≈ 1− e−t.

For the nonparametric bootstrap,

R(X∗, F̂n) =
n

maxiXi
(max

i
Xi −max

i
X∗
i )

and
Pθ{R(X∗, F̂n) = 0|F̂n} = 1− (1− 1

n
)n ≈ 1− e−1 ≈ 0.6321.

For any parametric bootstrap, we compute

Pθ{R(X∗, F̂n) ≤ t|F̂n} = Pθ{F−1
X1|Θ(1|Θ̂) ≤ max

i
X∗
i |FX1|Θ(·|Θ̂)}.
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To construct a bootstrap confidence interval, we proceed as follows. Let

h : F → R.

Then the confidence interval for h(Fθ) may take the form

(−∞, h(F̂n) + Y ] or [h(F̂n)− Y−, h(F̂n) + Y+]

where, for a coefficient γ confidence interval

Pθ{h(F̂n) + Y ≥ h(Fθ)} = γ or Pθ{h(F̂n)− Y− ≤ h(F ) ≤ h(F̂n) + Y+} = γ.

The goal is to find Y , Y− and Y+.
In the case that there is an available formula for the variance of F , σ2(F ), then we can write, for example,

Y = σ(F̂n)Ỹ .

The acknowledges that Ỹ may depend less on the underlying distribution than Y . Thus, we want Ỹ to
satisfy

Pθ{
h(Fθ)− h(F̂n)

σ(F̂n)
≤ Ỹ } = γ.

This lead to the percentile-t bootstrap confidence interval for h(F ),

(−∞, h(F̂n) + σ(F̂n)Ŷ ].

To determine Ŷ , note that

R(X,F ) =
h(F )− h(F̂n)

σ(F̂n)
and R(X∗, F̂n) =

h(F̂n)− h(F̂ ∗n)
σ(F̂ ∗n)

.

Let F̂R∗ be the empirical cumulative distribution function of R(X∗, F̂n), then

(−∞, σ(F̂n)F̂−1
R∗ (γ)]

will serve to give the bootstrap confidence interval.

One can use a similar procedure to detect bias. If

Eθ[φ(X)] = h(Fθ)

choose
R(X,F ) = φ(X)− h(F )

and find F̂R∗ .
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8 Large Sample Theory

Large sample theory relies on the limit theorems of probability theory. We begin the study of large with
empirical distribution functions.

8.1 Empirical Distribution Functions

Definition. Suppose that X1, · · · , Xn are independent and identically distributed and let

X(1), · · · , X(n)

be the order statistics.
Define the empirical cumulative distribution function Fn by

Fn(x) =
1
n

n∑
i=1

I(−∞,x](Xi).

For any distribution define the p-th quantile to be

F−1(p) = inf{x : F (x) ≥ p}.

If X1, · · · , Xn and independent real valued random variables hypothesized to follow some continuous
probability distribution function, F , then we might plot

X(k) versus F−1(
k

n+ 1
)

or equivalently

F (X(k)) versus
k

n+ 1
.

By the probability integral transform, Yi = F (Xi) has a uniform distribution on [0, 1]. In addition,

Y(k) = F (X(k)).

This transform allows us to reduce our study to the uniform distribution. The fact that Y(k) and k/(n+1)
are close is the subject of the following law of large numbers stheorem.

Theorem. (Glivenko-Cantelli)

lim
n→∞

sup
x
|Fn(x)− F (x)| = 0 a.s.
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Proof. (F continuous.) Fix x.

E[Fn(x)] =
1
n

n∑
i=1

E[I(∞,x](Xi)] = P{X1 ≤ x} = F (x).

Thus by the strong law of large numbers

lim
n→∞

Fn(x) = F (x) a.s.

If a sequence of nondecreasing functions converges pointwise to a bounded continuous function, then the
convergence is uniform.

We can use the delta method to obtain results for quantiles and order statistics. The Glivenko-Cantelli
theorem holds for general cumulative distribution functions F . One must also look at the limits of Fn(x−).

We know look for the central limit behavior that accompanies this. If we look at the limiting distribution
at a finite number of values x, we expect to find a mutivariate normal random variable.

Definition. Let I be an index set. An Rd-valued stochastic process {Z(t) : t ∈ I} is called a Gaussian
process if each of its finite dimensional distributions

Z(t1), · · · , Z(tn)

is a multivariate normal random variable. Consequently, the distribution of Z is determined by its

mean function µZ(t) = E[Z(t)], and its covariance function ΓZ(s, t) = Cov(Z(s).Z(t)).

Note that the covariance of a Gaussian process is a positive definite function. Conversely, any positive
semidefinite function is the covariance function of a Gaussian process.

Definition.

1. A real valued Gaussion process {W (t) : t ≥ 0} is called a Brownian motion if t 7→ W (t) is continuous
a.s.,

µW (t) = 0 and ΓW (s, t) = min{s, t}.

2. A real valued Gaussion process {B(t) : 0 ≤ t ≤ 1} is called a Brownian bridge if t 7→ B(t) is continuous
a.s.,

µB(t) = 0 and ΓB(s, t) = min{s, t} − st.

Given the existence of Brownian motion, we can deduce the properties of the Brownian bridge by setting

B̃(t) = W (t)− tW (1).

Because B̃ is the sum of two Gaussian processes, it is also a Gaussian process.

µB̃(t) = E[W (t)]− tE[W (1)] = 0,
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and for s ≤ t

ΓB̃(s, t) = E[(W (s)− sW (1))(W (t)− tW (1))]
= E[W (s)W (t)]− tE[W (s)W (1)]− sE[W (1)W (t)] + stE[W (1)2]
= s− ts− st+ st = s(1− t).

Theorem. Let Y1, Y2, · · · be independent U(0, 1) and define

Bn(t) =
√
n(Fn(t)− t),

then for t1 < · · · < tk,
(Bn(t1), · · · , Bn(tk)) →D (B(t1), · · · , B(tk))

as n→∞ where B is the Brownian bridge.

Proof. The number of observations among Y1, · · · , Yn below t is

Un(t) = nFn(t).

Set t0 = 0 and assume that tk = 1. Note that the random variables

Dn(i) = Un(ti)− Un(ti−1)

are Multi(n, t1 − t0, · · · , tk − tk−1). By the central limit theorem

D̃(i) ≡ 1√
n

(Un(ti)− Un(ti−1)− n(ti − ti−1)), i = 1, · · · , k

converges to a multivariate normal random variable D̃ with mean zero and covariance matrix

ΓD̃(i, j) = (ti − ti−1)(δij − (tj − tj−1)).

Now,
j∑
i=1

D̃n(j) =
j∑
i=1

1√
n

(Un(ti)− Un(ti−1)− n(ti − ti−1)) =
1√
n

(U(tj)− ntj) = Bn(tj).

Thus,
Bn(tj) = D̃nA

where the matrix A has entries A(i, j) = I{i≤j}. Consequently set,

B(tj) = D̃A.

Because B(tj) has mean zero, we need only check that these random variables have the covariance
structure of the Brownian bridge.
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To check this, let i ≤ j

ΓB̃(ti, tj) = (ATΓDA)(i, j)

=
j∑

m=1

j∑
`=1

A(m, i)ΓD(m, `)A(`, j)

=
i∑

m=1

j∑
`=1

ΓD(m, `)

=
i∑

m=1

j∑
`=1

(tk − tk−1)(δk` − (t` − t`−1))

= ti − titj = tj(1− ti)

We would like to extend this result to say that the the entire path converges in distribution. First, we
take the empirical distribution Fn and create a continuous version F̃n of this by linear interpolation. Then
the difference between Fn and F̃n is at most 1/n. This will allows us to discuss convergence on the separable
Banach space C([0, 1], R) under the supremum norm. Here is the desired result.

Theorem. Let Y1, Y2, · · · be independent U(0, 1) and define

Bn(t) =
√
n(F̃n(t)− t),

then
Bn →D B

as n→∞ where B is the Brownian bridge.

The plan is to show that the distribution of the processes {Bn;n ≥ 1} forms a relatively compact set
in the space of probability measures on C([0, 1], R). If this holds, then we know that the distributios of
{Bn;n ≥ 1} have limit points. We have shown that all of these limit points have the same finite dimensional
distributions. Because this characterizes the process, we have only one limit point, the Brownian bridge.

The strategy is due to Prohorov and begins with the following definition:

Definition. A set M of probability measures on a metric space S is said to be tight if for every ε > 0,
there exists a compact set K so that

inf
P∈M

P (K) ≥ 1− ε.

Theorem. (Prohorov)

1. If M is tight, then it is relatively compact.

2. If S is complete and separable, and if M is relatively compact, then it is tight.
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Thus, we need a characterization of compact sets in C([0, 1], R). This is provided by the following:

Definition. Let x ∈ C([0, 1], R). Then the modulus of continuity of x is defined by

ωx(δ) = sup
|s−t|<δ

|x(s)− x(t)|

.

Note that
|ωx(δ)− ωy(δ)| ≤ 2||x− y||,

and therefore, for fixed δ, ωx(δ) is continuous in x. Because x is uniformly continuous,

lim
δ→0

ωx(δ) = 0.

Theorem. (Arzela-Ascoli) A subset A ∈ C([0, 1], R) has compact closure if and only if

sup
x∈A

|x(0)| <∞, and lim
δ→0

sup
x∈A

ωx(δ) = 0.

In brief terms, any collection of uniformly bounded and equicontinuous functions has compact closure.
This leads to the following theorem.

Theorem. The sequence {Pn : n ≥ 1} of probability measures on C([0, 1], R) is tight if and only if:

1. For each positive η, there exist M so that

lim sup
n→∞

Pn{x : |x(0)| > M} ≤ η.

2. For each postive ε and η, there exists δ such that

lim sup
n→∞

Pn{x : ωx(δ) ≥ ε} ≤ η.

We can apply this criterion with Pn being the distribution of Bn to obtain the convergence in distribution
to the Brownian bridge.

Because Bn(0) = 0, the first property is easily satisfied.

For the second criterion, we estimate

P{ sup
s≤t≤t+δ

|Bn(s)−Bn(t)| ≥ ε} = P{sup
t≤δ

|Bn(t)| ≥ ε}

= P{sup
t≤δ

√
n|Fn(t)− t| ≥ ε}

= P{sup
t≤δ

√
n| 1
n

n∑
i=1

I[0,t](Yi)− t| ≥ ε}.
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and use this to show that given η > 0 and ε > 0, the exists δ > 0 so that

lim sup
n→∞

P{ωBn
(δ) ≥ ε} ≤ lim sup

n→∞

1
δ
P{sup

t≤δ

√
n| 1
n

n∑
i=1

I[0,t](Yi)− t| ≥ ε} ≤ η.

Write the Brownian bridge B(t) = W (t) − tW (1), where W is Brownian motion. Now let {Pε : ε > 0}
be a family of probability measures defined by

Pε(A) = P{W ∈ A|W (1) ∈ [0, ε]}.

Proposition. Pε →D P0 where P0 is the distribution of the Brownian bridge.

Proof. Let F be a closed subset of C([0, 1], R). We show that

lim sup
ε→0

P{W ∈ F |W (1) ∈ [0, ε]} ≤ P{B ∈ F}.

Fix t1 < · · · < tk note that the correlation of W (1) with each component of (B(t1), · · · , B(tk)) is zero
and thus W (1) independent of B. Therefore

P{B ∈ A|W (1) ∈ [0, ε]} = P{B ∈ A}.

Note that
|B(t)−W (t)| = t|W (1)|

and therefore
||B −W || = |W (1)|

Choose η < ε, then

P{W ∈ F |W (1) ∈ [0, ε]} ≤ P{B ∈ F η|W (1) ∈ [0, ε]} = P{B ∈ F η}.

Because F is closed,
lim
η→0

P{B ∈ F η} = P{B ∈ F}

We will use this to compute the Kolmogorov-Smirnov test.

Theorem. For c > 0,

lim
n→∞

P{ sup
0≤t≤1

|Bn(t)| ≤ c} = 1 + 2
∞∑
k=1

(−1)ke−2k2c2 .
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To begin, let X1, X2, · · · be an i.i.d. sequence of mean zero, finite variance, and let S0, S1, S2, · · · be the
sequence of partial sums. Set

mn = min0≤i≤n Si Mn = max0≤i≤n Si

m = min0≤t≤1W (t) M = max0≤t≤1W (t)

Because the mapping
x 7→ ( min

0≤t≤1
x(t), max

0≤t≤1
x(t), x(1))

from C([0, 1], R) to R3 is continuous, we have

Theorem.
1

σ
√
n

(mn,Mn, Sn) →D (m,M,W (1)).

For a simple random walk, we find an explicit formula for

pn(a, b, v) = P{a < mn ≤Mn < b, Sn = v}.

Claim. If qn(j) = P{Sn = j}, then for integer a ≤ 0 ≤ b, a ≤ v ≤ b, a < b,

pn(a, b, v) =
∞∑

k=−∞

qn(v + 2k(b− a))−
∞∑

k=−∞

qn(2b− v + 2k(b− a)).

Note that the sum above is finite if a < b. To prove by induction, check that p0(a, b, 0) = 1, and
p0(a, b, v) 6= 0 for v 6= 0.

Now assume that the formula above holds for pn−1.

Case 1. a = 0
Because S0 = 0, pn(0, b, v) = 0. Because qn(j) = qn(−j), the two sums in the formula are equal.

Case 2. b = 0 is similar.

Case 3. a < 0 < b, a ≤ v ≤ b.
Because a+ 1 ≤ 0 and b− 1 ≥ 0, we have the formula for

pn−1(a− 1, b− 1, v − 1) and pn−1(a+ 1, b+ 1, v + 1)

Use
qn(j) =

1
2
(qn−1(j − 1) + qn−1(j + 1))

and
pn(a, b, v) =

1
2
(pn−1(a− 1, b− 1, v − 1) + pn−1(a+ 1, b+ 1, v + 1))

121



to obtain

∞∑
k=−∞

1
2
(qn−1(v − 1 + 2k(b− a)) + qn−1(v + 1 + 2k(b− a)))

−
∞∑

k=−∞

1
2
(qn−1(2(b− 1)− (v − 1) + 2k(b− a)) + qn−1(2(b+ 1)− (v + 1) + 2k(b− a)))

=
1
2
(pn−1(a− 1, b− 1, v − 1) + pn−1(a+ 1, b+ 1, v + 1)).

Therefore,
P{a < mn ≤Mn < b, u < Sn < v}

=
∞∑

k=−∞

P{u+ 2k(b− a) < Sn < v + 2k(b− a)} −
∞∑

k=−∞

P{2b− v + 2k(b− a) < Sn < 2b− u+ 2k(b− a)}.

By the continuity of the normal distribution, a termwise passage to the limit as n→∞ yields

P{a < m ≤M < b, u < W (1) < v}

=
∞∑

k=−∞

P{u+2k(b−a) < W (1) < v+2k(b−a)}−
∞∑

k=−∞

P{2b−v+2k(b−a) < W (1) < 2b−u+2k(b−a)}.

Let −a = b = c, u = 0, and v = ε, then

P{ sup
0<t<1

|W (t)| < c, 0 < W (1) < ε}

=
∞∑

k=−∞

P{4kc < W (1) < ε+ 4kc} −
∞∑

k=−∞

P{2c− ε+ 4kc < W (1) < 2c+ 4kc}.

Use
lim
ε→0

1
ε
P{x < W (1) < x+ ε} =

1√
2π
e−x

2/2.

to obtain

P{| sup
0<t<1

|B(t)| < c} =
∞∑

k=−∞

e−2(kc)2 −
∞∑

k=−∞

e−2(c+kc)2 = 1 + 2
∞∑

k=−∞

e−2k2c2

We can convert this limit theorem on empirical cumulative distribution function to sample quantiles using
the following lemma.

Lemma. Let Y1, Y2, · · · be independent U(0, 1). Fix t ∈ [0, 1] then for each z ∈ R there exists a sequence
An such that, for every ε > 0,

lim
n→∞

P{|An| >
√
nε} = 0.
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and √
n(F̃−1

n (t)− t) ≤ z, if and only if
√
n(t− F̃ (t)) ≤ z +

√
nAn.

Proof. Set

An = F̃n(t+
z√
n

)− F̃n(t)−
z√
n

=
1
n

(Un(t+
z√
n

)− Un(t))−
z√
n

+ δn,

where δn ≤ 2/n and Un(t) is the number of observations below t. Check, using, for example characteristic
functions, that An has the desired property. To complete the lemma, consider the following equivalent
inequalities.

√
n(F̃−1

n (t)− t) ≤ z

F̃−1
n (t) ≤ t+

z√
n

t = F̃n(F̃−1
n (t)) ≤ F̃n(t+

z√
n

)

t ≤ An + F̃n(t) +
z√
n

√
n(t− F̃n(t)) ≤ z +

√
nAn

Corollary. Let Y1, Y2, · · · be independent U(0, 1) and define

B̂n(t) =
√
n(F̃−1

n (t)− t),

then
B̂n →D B

as n→∞, where B is the Brownian bridge.

Use the delta method to obtain the following.

Corollary. Let 0 < t1 < · · · < tk < 1 and let X1, X2, · · · be independent with cumulative distribution
function F . Let xt = F−1(t) and assume that F has derivative f in a neighborhood of each xti . i = 1, · · · , k,
0 < f(xti) <∞. Then √

n(F̃−1
n (t1)− xt1 , · · · , F̃−1

n (tk)− xtk) →D W,

where W is a mean zero normal random vector with covariance matrix

ΓW (i, j) =
min{ti, tj} − titj

f(ti)f(tj)
.
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Examples. For the first and third quartiles, Q1 and Q3, and the median we have the following covariance
matrix.

ΓW =


3
16

1
f(x1/4)2

1
8

1
f(x1/4)f(x1/2)

1
16

1
f(x1/4)f(x3/4)

1
8

1
f(x1/4)f(x1/2)

1
4

1
f(x1/2)2

1
8

1
f(x1/2)f(x3/4)

1
16

1
f(x1/4)f(x3/4)

1
8

1
f(x1/2)f(x3/4)

3
16

1
f(x3/4)2


1. For the Cauchy distribution, the density is

f(x) =
1
σπ

1
1 + (x− µ)2/σ2

.

Therefore,
x1/4 = µ− σ, x1/2 = µ, x3/4 = µ+ σ,
f(x1/4) = 1

4σπ f(x1/2) = 1
σπ , f(x3/4) = 1

4σπ

2. For the normal distribution, the density is

f(x) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
.

Therefore,

x1/4 = µ− 0.6745σ, x1/2 = µ, x3/4 = µ+ 0.6745σ,
f(x1/4) = 1

σ
√

2π
exp

(
− 0.67452

2

)
f(x1/2) = 1

σ
√

2π
, f(x3/4) = 1

4σπ exp
(
− 0.67452

2

)
For the extreme statistics, we have:

Theorem. For x−, x+ ∈ R, α−, α+ > 0, and assume

lim
x→x−+

(x− x−)F (x) = c− > 0, and lim
x→x+−

(x− x+)F (x) = c+ > 0.

Let X1, X2, · · · be i.i.d. observations with cumulative distribution function F ,

mn = min{X1, · · · , Xn} and Mn = max{X1, · · · , Xn}.

then

lim
n→∞

P{n1/α−(mn − x−) < t−, n
1/α+(x+ −Mn) < t+} = (1− exp(−c−tα−− ))(1− exp(−c+tα+

+ )).
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8.2 Estimation

The sense that an estimator ought to arrive eventually at the parameter as the data increases is captured
by the following definition.

Definition. Let {Pθ : θ ∈ Ω} be a parametric family of distributions on a sequence space X∞. Let G
be a metric space with the Borel σ-field. Let

g : Ω → G

and
Yn : X∞ → G

be a measurable function that depends on the first n coordinates of X∞. We say that Yn is consistent for
g(θ) if

Yn →P g(θ), Pθ

.

Suppose that Ω is k-dimensional and suppose that the FI regularity conditions hold and that IX1(θ) is
the Fisher information matrix for a single observation. Assume, in addition,

√
n(Θ̂n − θ) →D Z

where Z is N(0, Vθ).
If g is differentiable, then, by the delta method

√
n(g(Θ̂n)− g(θ)) →D 〈∇g(θ), Z〉.

In particluar, g(Θ̂) is a consistent estimator of g(θ).

The variance of 〈∇g(θ), Z〉 is
∇g(θ)TVθ∇g(θ).

We know that the smallest possible variance for an unbiased estimator of g(θ) is

∇g(θ)TIX1(θ)
−1∇g(θ).

The ratio of these two variance is a measure of the quality of a consistent estimator.

Definition. For each n, let Gn be and estimator of g(θ) satisfying
√
n(Gn)− g(θ)) →D W

where W is N(0, vθ). Then the ratio
∇g(θ)TIX1(θ)

−1∇g(θ)
vθ

is called the asymptotic efficiency of {Gn : n ≥ 1}. If this ratio is one then the sequence of estimators is
asymptotically efficient.
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To compare estimating sequences, we have

Definition. Let {Gn : n ≥ 1} and {G′n : n ≥ 1} and let Cε be a criterion for an estimator. Fix ε and let

n(ε) and n′(ε)

be the first value for which the respective estimator satisfies Cε. Assume

lim
ε→0

n(ε) = ∞ and lim
ε→0

n′(ε) = ∞.

Then

r = lim
ε→0

n′(ε)
n(ε)

is called the asymptotically relative efficiency (ARE) of {Gn : n ≥ 1} and {G′n : n ≥ 1}.

Examples.

1. Let X1, X2, · · · be independent N(µ, σ2) random variables. Let g(µ, σ) = µ. Let Gn be the sample
mean and G′n be the sample median. Then,

√
n(Gn − µ) →D σZ and

√
n(Gn − µ) →D

√
π

2
σZ,

where Z is a standard normal. Assume that Cε is that the estimator have variance below ε. Then the
asymptotic relative efficiency is

√
2/π ≈ 0.79788.

2. Let X1, X2, · · · be independent U(0, θ) random variables. The maximum likelihood estimator of θ is

Θ̂ = max
1≤i≤n

Xi.

A second estimator is
2X̄n.

Set Cε to be having the stimator have variance below θ2ε. We have

Var(Θ̂n) =
θ2n

(n+ 1)2(n+ 2)
and Var(2X̂n) =

θ2

3n
.

Therefore,

n′(ε) =
(n(ε) + 1)2(n(ε) + 2)

n(ε)
,

and the ARE of Θ̂n to 2X̄n is ∞.

3. Let X1, X2, · · · be independent N(µ, 1) random variables. Then IX1(θ) = 1 and
√
n(X̄n − θ) →D Z,
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a standard normal. Fix θ0 and for 0 < a < 1 define a new estimator of Θ

Gn =
{
X̄n if |X̄n − θ0| ≥ n−1/4,
θ0 + a(X̄ − θ0) if |X̄n − θ0| < n−1/4.

This is like using a posterior mean of Θ when X̄n is close to θ0. To calculate the effieiency of Gn,
consider:

Case 1. θ 6= θ0. √
n|X̄n −Gn| =

√
n(1− a)|X̄n −Gn|I[0,n−1/4](|X̄n −Gn|).

Hence, for ε > 0,

P ′θ{
√
n|X̄n − θ0| > ε} ≤ P ′θ{|X̄n − θ0| > n−1/4}

= P ′θ{(θ0 − θ)
√
n− n−1/4 ≤

√
n(X̄n − θ) ≤ (θ0 − θ)

√
n+ n−1/4}.

Because
√
n(X̄n− θ) is a standard normal and the endpoints both tend to either +∞ or −∞, this last

quantity has zero limit as n→∞. Therefore

lim
n→∞

P ′θ{
√
n|Gn − X̄n| > ε} = 0.

Case 2. θ = θ0.
√
n|(X̄n − θ0) + (θ0 −Gn)| =

√
n(1− a)|X̄n − θ0|I[n−1/4,∞)(|X̄n − θ0|).

Hence, for ε > 0,

P ′θ0{
√
n|(X̄n − θ0) + (θ0 −Gn)| > ε} ≤ P ′θ0{|(X̄n − θ0)| > n−1/4} = P ′θ0{

√
n|(X̄n − θ0)| > n1/4}

Again, this last quantity has zero limit as n→∞. Therefore

lim
n→∞

P ′θ{
√
n|(Gn − θ0) + a(X̄n − θ0)| > ε} = 0.

Therefore, √
n(Gn − θ) →D W

where W is N(0, vθ) where vθ = 1 except at θ0 where vθ0 = a2. Thus, the effieiency at θ0 is 1/a2 > 1.
This phenomenon is called superefficiency. LeCam proved that under conditions slightly stronger that

the FI regularity conditions, superefficiency can occur only on sets of Lebsegue measure 0.
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8.3 Maximum Likelihood Estimators

Theorem. Assume that X1, X2, · · · are independent with density

fX1|Θ(x|θ)

with respect to some σ-finite measure ν. Then for each θ0 and for each θ 6= θ0,

lim
n→∞

P ′θ0{
n∏
i=1

fX1|Θ(Xi|θ0) >
n∏
i=1

fX1|Θ(Xi|θ)} = 1.

Proof. The event above is equivalent to

R(x) =
1
n

n∑
i=1

log
fX1|Θ(xi|θ)
fX1|Θ(xi|θ0)

< 0.

By the law of large numbers

R(X) → Eθ0 [log
fX|Θ(Xi|θ)
fX1|Θ(Xi|θ0)

] = −IX1(θ0; θ), a.s. Pθ0 ,

the Kullback-Leibler information, which is negative whenever θ 6= θ0.

Consistency follows from the following.

Theorem. (Wald) Assume that X1, X2, · · · are independent with density

fX1|Θ(x|θ)

with respect to some σ-finite measure ν. Fix θ0 ∈ Ω, and define, for each M ⊂ Ω and x ∈ X .

Z(M,x) = inf
ψ∈M

log
fX1|Θ(x|θ0)
fX1|Θ(x|ψ)

.

Assume,

1. for each θ 6= θ0, the is an open neighborhood Nθ of θ such that Eθ0 [Z(Nθ, X1)] > 0. and

2. for Ω not compact, there exists a compact set K containing θ0 such that Eθ0 [Z(Kc, X1)] = c > 0.

Then, then maximum likelihood estimator

Θ̂n → θ0 a.s. Pθ0 .

Proof. For Ω compact, take K = Ω. Let ε > 0 and let G0 be the open ε ball about θ0. Because K\G0

is compact, we can find a finite open cover G1, · · · , Gm−1 ⊂ {Nθ : θ 6= θ0}. Thus, writing Gm = Kc,

Ω = G0 ∪G1 ∪ · · · ∪Gm, and Eθ0 [Z(Gj , X1)] = cj > 0.
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Let Bj ⊂ X∞ satisfy

lim
n→∞

1
n

n∑
i=1

Z(Gj , xi) = cj .

Similarly define the set B0 for Kc. Then, by the strong law of large numbers

Pθ0(Bj) = 1 j = 0, · · · ,m.

Then,

{x : lim sup
n→∞

||Θ̂n(x1, · · · , xn)− θ0|| > ε} ⊂ ∪mj=1{x : Θ̂n(x1, · · · , xn) ∈ Gj i.o.}

⊂ ∪mj=1{x : inf
ψ∈Gj

1
n

n∑
i=1

log
fx1|Θ(xi|θ0)
fx1|Θ(xi|ψ)

≤ 0 i.o.}

⊂ ∪mj=1{x :
1
n

n∑
i=1

Z(Gj , xi) ≤ 0 i.o.} ⊂ ∪mj=1B
c
j .

This last event has probability zero and thus we have the theorem.

Examples.

1. Let X1, X2, · · · be independent U(0, θ) random variables. Then

log
fX1|Θ(x|θ0)
fX1|Θ(x|ψ)

=


log ψ

θ0
if x ≤ min{θ0, ψ}

∞ if ψ < x ≤ θ0
−∞ if θ0 < x ≤ ψ
undefined otherwise.

We need not consider the final two case which have Pθ0 probability 0. Choose

Nθ = ( θ+θ02 ,∞) for θ > θ0, Z(Nθ, x) = log( θ+θ02θ0
) > 0

Nθ = ( θ2 ,
θ+θ0

2 ) for θ < θ0, Z(Nθ, x) = ∞

For the compact set K consider [θ0/a, aθ0], a > 1. Then,

inf
θ∈Ω\K

log
fX1|Θ(x|θ0)
fX1|Θ(x|θ)

=
{

log x
θ0

if x < θ0
a

log a if θ0 ≥ x ≥ θ0
a

This has Pθ0 mean
1
θ0

(∫ θ0/a

0

log
x

θ0
dx+

∫ θ0

θ0/a

log a dx

)
.

As a→∞, the first integral has limit 0, the second has limit ∞. Choose a such that the mean is positive.

The conditions on the theorem above can be weakened if fX1|Θ(x|·) is upper semicontinuous. Note that
the sum of two upper semicontinuous functions is upper semicontinuous and that an upper semicontinuous
function takes its maximum on a compact set.

Theorem. Replace the first condition of the previous theorem with
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1. Eθ0 [Z(Nθ, Xi)] > −∞.

Further, assume that fX1|Θ(x|·) is upper semicontinuous in θ for every x a.s. Pθ0 . Then

lim
n→∞

Θ̂ = θ0, a.s. Pθ0 .

Proof. For Ω compact, take K = Ω. For each θ 6= θ0, let Nθ,k be a closed ball centered at θ, having
radius at most 1/k and satisfying

Nθ,k+1 ⊂ Nθ,k ⊂ Nθ.

Then by the finite intersection property,
∩∞k=1Nθ,k = {θ}.

Note that Z(Nθ,k, x) increases with k and that log
(
fX1|Θ(x|θ0)/fX1|Θ(x|ψ)

)
is is upper semicontinuous in θ

for every x a.s. Pθ0 . Consequently, for each k, there exists θk(x) ∈ Nθ,k such that

Z(Nθ,k, x) = log
(
fX1|Θ(x|θ0)
fX1|Θ(x|θk)

)
and therefore

Z(Nθ, x) ≥ lim
k→∞

Z(Nθ,k, x) ≥ log
(
fX1|Θ(x|θ0)
fX1|Θ(x|θ)

)
,

If Z(Nθ, x) = ∞, then Z(Nθ,k, x) = ∞ for all k. If Z(Nθ, x) <∞, then an application of Fatou’s lemma to
{Z(Nθ,k, x)− Z(Nθ, x)} implies

lim inf
k→∞

Eθ0 [Z(Nθ,k, Xi)] ≥ Eθ0 [lim inf
k→∞

Z(Nθ,k, Xi)] ≥ IX1(θ0; θ) > 0.

Now choose k∗ so that Eθ0 [Z(Nθ,k∗ , Xi)] > 0 and apply the previous theorem.

Theorem. Suppose thatX1, X2, · · · and independent random variables from a nondegenerate exponential
family of distributions whose density with respect to a measure ν is

fX1|Θ(X|θ) = c(θ) exp〈θ, x〉.

Suppose that the natural parameter space Ω is an open subset of Rk and let Θ̂n be the maximum likelihood
estimate of θ based on X1, · · · , Xn if it exists. Then

1. limn→∞ Pθ{Θ̂nexists} = 1,

2. and under Pθ √
n(Θ̂n − θ) →D Z,

where Z is N(0, IX1(θ)
−1) and IX1(θ) is the Fisher information matrix.
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Proof. Fix θ.
∇ log fX|Θ(x|θ) = nx̄n + n∇ log c(θ).

Thus if the MLE exists, it must be a solution to

−∇ log c(θ) = x̄.

The Hessian matrix is the Fisher information matrix,

IX(θ)i,j = − ∂2

∂θiθj
log c(θ)

Because the family is nondegenerate, this matrix is is positive definite and therefore − log c(θ) is strictly
convex. By the implicit function theorem, v has a continuously differentiable inverse h in a neighborhood of
θ. If X̄n is in the domain of h, then the MLE is h(X̄n).

By the weak law of large numbers,

X̄n →P Eθ[X] = −∇ log c(θ) Pθ.

Therefore, X̄n will be be in the domain of h with probability approaching 1. This proves 1.
By the central limit theorem, √

n(X̄n +∇c(θ)) →D Z

as n→∞ where Z is N(0, IX(θ)). Thus, by the delta method,
√
n(Θ̂n − θ) →D AZ

where the matrix A has (i, j) entry ∂h(t)/∂tj evaluated at t = v(θ), i.e., A = IX(θ)−1. Therefore AZ has
covariance matrix IX(θ)−1.

Corollary. Under the conditions of the theorem above, the maximum likelihood estimate of θ is consis-
tent.

Corollary. Under the conditions of the theorem above, and suppose that g ∈ C1(Ω, R), then g(Θ̂n) is
an asymptotically efficient estimator of g(θ).

Proof. Using the delta method
√
n(g(Θ̂n)− g(θ)) →D ∇g(θ)W

where W is N(0, IX(θ)−1). Therefore, the estimator is asymtotically efficient.

We can obtain inconsistent maximum likelihood estimators. This is easy in cases in which the mapping

θ → Pθ

does not have good continuity properties.
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Example. Let (X1, Y1), (X2, Y2), · · · be independent random variales, Xi, Yi are N(µi, σ2) The log like-
lihood function

logL(θ) = −n log(2π)− 2n log σ +
1

2σ2

n∑
i=1

((xi − µi)2 + (yi − µi)2)

= −n log(2π)− 2n log σ +
1

2σ2

(
2

n∑
i=1

(
xi + yi

2
− µi

)
1
2

n∑
i=1

(xi − yi)2
)

Thus the maximum likelihood estimators are

M̂i,n =
Xi + Yi

2
, Σ̂2

i,n =
1
4n

n∑
i=1

(Xi − Yi)2.

Because Xi − Yi is N(0, 2σ2) and thus

Σ̂i,n →P σ2

2
Pθ.

Thus, the estimator is not consistent.

To obtain general sufficient conditions for the asymptotically normality of maximum likelihood estimators,
we have.

Theorem. For the parameter space Ω ∈ Rp, let X1, X2, · · · have density fX|Θ be C2 in θ and that this
differentiation can be passed under the integral sign. Assume

1. the Fisher information matrix IX1(θ) is finite and non-singular,

2. for each θ, the MLE Θ̂n →P θ, Pθ, as n→∞, and

3. there exists Hr such that for each θ0 ∈ int(Ω),

sup
||θ−θ0||≤r

| ∂2

∂θk∂θj
log fX1|Θ(x|θ0)−

∂2

∂θk∂θj
log fX1|Θ(x|θ)| ≤ Hr(x, θ0),

with limr→0Eθ0 [Hr(X1, θ0)] = 0. Then, under Pθ0 ,
√
n(Θ̂n − θ0) →D W

as n→∞ where W is N(0, I−1
X1

(θ0)).

Proof. For θ0 ∈ int(Ω), Θ̂n →P θ0, Pθ0 . Thus, with Pθ0 probability 1, there exists N such that
Iint(Ω)c(Θ̂n) = 0 for all n ≥ N . Thus, for every sequence of random variables {Zn : n ≥ 1} and ε > 0,

lim
n→∞

Pθ0{ZnIint(Ω)c(Θ̂n) > ε
√
n} = 0.

Set

`(θ|x) =
1
n

n∑
i=1

log fX1|Θ(xi|θ).
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For Θ̂n ∈ int(Ω),
∇θ`(Θ̂n|X) = 0.

Thus,
∇θ`(Θ̂n|X) = ∇θ`(Θ̂n|X)Iint(Ω)c(Θ̂n),

and
lim
n→∞

Pθ0{∇θ`(Θ̂n|X) > ε
√
n} = 0.

By Taylor’s theorem,

∂

∂θj
`(Θ̂n|X) =

∂

∂θj
`(θ0|X) +

p∑
k=1

∂

∂θk

∂

∂θj
`(θ∗n,k|X)(Θ̂n,k − θ0,k),

where θ∗n,k is between θ0,k and Θ̂n,k.
Because Θ̂n →P θ0, we have that θ∗n →P θ0. Set Bn to be the matrix above. Then,

lim
n→∞

Pθ0{|∇θ`(θ0|X) +Bn(Θ̂n − θ0)| > ε
√
n} = 0.

Passing the derivative with respect to θ under the integral sign yields

Eθ0 [∇θ`(θ0|X)] = 0.

Pass a second derivative with respect to θ under the integral sign to obtain the covariance matrix IX1(θ0)
for ∇θ`(θ0|X). By the multivariate central limit theorem,

√
n∇θ(θ0|X) →D W

as n→∞ where W is N(0, IX1(θ0)).
Consequently, for ε > 0, there exists c so that

lim sup
n→∞

Pθ0{
√
nBn(Θ̂n − θ0) > c} < ε.

Write

Bn(k, j) =
1
n

n∑
i=1

∂

∂θk

∂

∂θj
log fX1|Θ(Xi|θ) + ∆n.

Then, by hypothesis,

|∆n| ≤
1
n

n∑
i=1

Hr(Xi, θ0)

whenever ||θ0 − θ∗n|| ≤ r. The law of large numbers gives

1
n

n∑
i=1

Hr(Xi, θ0) →P Eθ0 [Hr(X1, θ0)] Pθ0 .
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Let ε > 0 and choose r so that
Eθ0 [Hr(X1, θ0)] <

ε

2
.

P ′θ0{|∆n| > ε} ≤ P ′θ0{
1
n

n∑
i=1

Hr(Xi, θ0) > ε}+ P ′θ0{||θ0 − θ∗n|| ≤ r}

≤ P ′θ0{|
1
n

n∑
i=1

Hr(Xi, θ0)− Eθ0 [Hr(X1, θ0)]| >
ε

2
}+ P ′θ0{||θ0 − θ∗n|| ≤ r}

Therefore,
∆n →P 0, Pθ0 , and Bn →P −IX1(θ0), Pθ0 .

Write Bn = −IX1(θ0) + Cn, then for any ε > 0,

lim
n→∞

Pθ0{|
√
nCn(Θ̂n − θ0)| > ε} = 0.

Consequently, √
n(∇θ`(θ0|X) + IX1(θ0)(Θ̂n − θ0)) →P 0, Pθ0 .

By Slutsky’s theorem,
−IX1(θ0)

√
n(Θ̂n − θ0)) →D Z, Pθ0 .

By the continuity of matrix multiplication,
√
n(Θ̂n − θ0)) →D −IX1(θ0)

−1Z, Pθ0 ,

which is the desired distribution.

Example. Suppose that

fX1|Θ(x|θ) =
1

π(1 + (x− θ)2)
.

Then,
∂2

∂θ2
log fX1|Θ(x|θ) = −2

1− (x− θ)2

(1 + (x− θ)2)2
.

This is a differentiable function with finite mean. Thus, Hr exists in the theorem above.

Because θ0 is not known, a candidate for IX1(θ0) must be chosen. The choice

IX1(Θ̂n)

is called theexpected Fisher information.
A second choice is the matrix with (i, j) entry

− 1
n

∂2

∂θiθj
log fX1|Θ(X|Θ̂n)

is called the observed Fisher information.
The reason given by Efron and Hinkley for this choice is that the inverse of the observed information is

closer to the conditional variance of the maximum likelihood estimator given an ancillary.
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8.4 Bayesian Approaches

Theorem. Let (S,A, µ) be a probability space, (X ,B) a Borel space, and Ω be a finite dimensional parameter
space endowed with a Borel σ-field. Let

Θ : S → Ω and Xn : S → X n = 1, 2, · · · ,

be measurable. Suppose that there exists a sequence of functions

hn : Xn → Ω

such that
hn(X1, · · · , Xn) →P Θ.

Given (X1, · · · , Xn) = (x1, · · · , xn), let

µΘ|X1,···,Xn
(·|x1, · · · , xn)

denote the posterior probability distribution on Ω. Then for each Borel set B ∈ Ω,

lim
n→∞

µΘ|X1,···,Xn
(B|x1, · · · , xn) = IB(Θ) a.s. µ.

Proof. By hypothesis Θ is measurable with respect to the completion of σ{Xn : n ≥ 1}. Therefore, with
µ probability 1, by Doob’s theorem on uniformly integrable martingales,

IB(Θ) = lim
n→∞

E[IB(Θ)|X1, · · · , Xn] = lim
n→∞

µΘ|X1,···,Xn
(B|X1, · · · , Xn).

Theorem. Assume the conditions on Wald’s consistency theorem for maximum likelihood estimators.
For ε > 0, assume that the prior distribution µΘ satisfies

µΘ(Cε) > 0,

where Cε = {θ : IX1(θ0; θ) < ε}. Then, for any ε > 0 and open set G0 containing Cε, the posterior satisfies

lim
n→∞

µΘ|X1,···,Xn
(G0|X1, · · · , Xn) = 1 a.s. Pθ0 .

Proof. For each sequence x ∈ X∞, define

Dn(θ, x) =
1
n

n∑
i=1

log
fX1|Θ(xi|θ0)
fX1|Θ(xi|θ)

.

Write the posterior odds of G0 as

µΘ|X1,···,Xn
(G0|x1, · · · , xn)

µΘ|X1,···,Xn
(Gc0|x1, · · · , xn)

=

∫
G0

∏n
i=1 fX1|Θ(xi|θ) µΘ(dθ)∫

Gc
0

∏n
i=1 fX1|Θ(xi|θ) µΘ(dθ)

=

∫
G0

exp(−nDn(θ, x)) µΘ(dθ)∫
Gc

0
exp(−nDn(θ, x)) µΘ(dθ)

.
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To show that the posterior odds go to ∞, we find a lower bound for the numerator and an upper bound
for the denominator.

As in the proof of Wald’s theorem, we construct sets G1, · · · , Gm so that

Ω = G0 ∪G1 ∪ · · · ∪Gm, and Eθ0 [Z(Gj , X1)] = cj > 0.

For M ∈ Ω,

inf
θ∈M

Dn(θ, x) ≥
1
n

n∑
i=1

Z(M,xi).

Thus the denominator is at most
m∑
j=1

∫
Gj

e−nDn(θ,x) µΘ(dθ) ≤
m∑
j=1

sup
θ∈Gj

e−nDn(θ,x) µΘ(Gj) ≤
m∑
j=1

exp

(
−

n∑
i=1

Z(Gj , xi)

)
µΘ(Gj).

Set c = min{c1, · · · , cm}, then for all x in a set of Pθ0 probability 1, we have, by the strong law of large
numbers, a number N(x) so that for n ≥ N(x),

n∑
i=1

Z(Gj , xi) >
nc

2

and, thus, we have a bound on the denominator of exp(−nc/2).

For the numerator, let 0 < δ < min{ε, c/2}/4. For each x ∈ X∞ or θ ∈ Ω, define

Wn(x) = {θ : D`(θ, x) ≤ IX1(θ0; θ) + δ, for all ` ≥ n},

and
Vn(θ) = {x : D`(θ, x) ≤ IX1(θ0; θ) + δ, for all ` ≥ n}.

Clearly
x ∈ Vn(θ) if and only if θ ∈Wn(x).

Note that the strong law says that

Dn(θ, x) → IX1(θ0; θ) a.s. Pθ0 .

Thus, Vn(θ) is a nested sequence of events whose Pθ0 probability converges to 1.

µΘ(Cδ) = limn→∞
∫
Cδ
Pθ0(Vn(θ)) µΘ(dθ) = lim

n→∞

∫
Cδ

∫
X∞

IVn(θ)(x) Pθ0(dx)µΘ(dθ)

= limn→∞
∫
X∞

∫
Cδ
IWn(x)(θ) µΘ(dθ)Pθ0(dx) = lim

n→∞

∫
X∞

µΘ(Cδ ∩Wn(x))Pθ0(dx)

Therefore,
lim
n→∞

µΘ(Cδ ∩Wn(x)) = µΘ(Cδ) a.s. Pθ0 .
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For x in the set in which this limit exists, there exists Ñ(x) such that

µΘ(Cδ ∩Wn(x)) >
1
2
µΘ(Cδ)

whenever n ≥ Ñ(x). Use the fact that IX1(θ0; θ) < δ for θ ∈ Cδ to see that the numerator is at least∫
Cδ∩Wn(x)

exp(−n(IX1(θ0; θ) + δ)) µΘ(dθ) ≥ 1
2

exp(−2nδ)µΘ(Cδ) ≥
1
2

exp(−nc
4

)µΘ(Cδ).

Therefore, for x in a set having Pθ0 probability 1 and n ≥ max{N(x), Ñ(x)}, the posterior odds are at
least

1
2
µθ(Cδ) exp(

nc

4
)

which goes to infinity with n.

Example. For X1, X2, · · · independent U(0, θ) random variables, the Kullback-leibler information is

IX1(θ0; θ) =
{

log θ
θ0

if θ ≥ θ0
∞ if θ < θ0

The set
Cε = [θ, eεθ0).

Thus, for some δ > 0,
(θ0 − δ, eεθ0) ⊂ G0.

Consequently is the prior distribution assigns positive mass to every open interval, then the posterior prob-
ability of any open interval containing θ0 will tend to 1 a.s. Pθ0 as n→∞.

To determine the asymptotic normality for posterior distributions, we adopt the following general notation
and regularity conditions.

1. Xn : S → Xn, for n = 1, 2, · · ·

2. The parameter space Ω ⊂ Rk for some k.

3. θ0 ∈ int(Ω).

4. The conditional distribution has density fxn|Θ(Xn|θ) with respect to some σ-finite measure ν.

5. `n(θ) = log fXn|Θ(Xn|θ).

6. H`n(θ) is the Hessian of `n(θ).

7. Θ̂n is the maximum likelihood estimator of Θ if it exists.

8.

Σn =
{
−H`n(Θ̂n)−1 if the inverse and Θ̂n exist,
Ik otherwise.
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9. The prior distribution of Θ has a density with respect to Lebesgue measure that is positive and
continuous at θ0.

10. The largest eigenvalue of Σn goes to zero as n→∞.

11. Let λn be the smallest eigenvalue of Σn. If the open ball B(θ0, δ) ⊂ Ω, then there exists K(δ) such
that

lim
n→∞

P ′θ0{ sup
θ 6∈B(θ0,δ)

λn(`n(θ)− `n(θ0)) < −K(δ)} = 1.

12. For each ε > 0, there exists δ > 0 such that

lim
n→∞

P ′θ0{ sup
θ∈B(θ0,δ),||γ||=1

|1 + γTΣ1/2
n H`n(θ)Σ1/2

n γ| < ε} = 1.

Theorem. Under the regularity conditions given above, set

Ψn = Σ−1/2
n (Θ− Θ̂n).

Then, for each compact set K ⊂ Rk and each ε > 0,

lim
n→∞

P ′θ0{ sup
ψ∈K

|fΨn|Xn
(ψ|Xn)− φ(ψ)| > ε} = 0.

where φ is the Nk(0, Ik) density.

Proof. Note the regularity conditions guarantee that Θ̂n is consistent. By Taylor’s theorem,

fXn|Θ(Xn|θ) = fXn|Θ(Xn|Θ̂n) exp(`(θ)− `(Θ̂n))

= fXn|Θ(Xn|Θ̂n) exp
(
−1

2
(θ − Θ̂n)TΣ−1/2

n (Ik −Rn(θ,Xn))Σ−1/2
n (θ − Θ̂n) + ∆n

)
,

where
∆n = (θ − Θ̂n)T∇`(Θ̂n)Iint(Ω)(Θ̂n), and Rn(θ,Xn) = Ik + Σ1/2

n H`n(θ∗n)Σ1/2
n ,

with θ∗n between θ and Θ̂n. Note that θ0 ∈ int(Ω) and the consistency of Θ̂n imply that

lim
n→∞

P ′θ0{∆n = 0, for all θ} = 1.

By Bayes’ theorem, we can write the posterior density of Θ as

fΘ|Xn
(θ|Xn) = fΘ(θ)

fXn|Θ(Xn|θ)
fXn

(Xn)
.

The posterior density

fΨn|Xn
(ψ|Xn) =

det(Σn)1/2fΘ(Σ1/2
n ψ + Θ̂n)fXn|Θ(Xn|Σ1/2

n ψ + Θ̂n))
fXn

(Xn)

=
det(Σn)1/2fXn|Θ(Xn|Θ̂n)fΘ(Σ1/2

n ψ + Θ̂n)
fXn(Xn)

fXn|Θ(Xn|Σ1/2
n ψ + Θ̂n)

fXn|Θ(Xn|Θ̂n)
.
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To consider the first factor, choose 0 < ε < 1. Let η satisfy

1− ε ≤ 1− η

(1 + η)k/2
, 1 + ε ≥ 1 + η

(1− η)k/2
.

Because the prior is continuous and nonnegative at θ0, and by the regularity conditions there exists δ > 0
such that

||θ − θ0|| < δ implies |fΘ(θ)− fΘ(θ0)| < ηfΘ(θ0)

and
lim
n→∞

P ′θ0{ sup
θ∈B(θ0,δ),||γ||=1

|1 + γTΣ1/2
n H`n(θ)Σ1/2

n γ| < η} = 1.

Clearly

fXn
(Xn) = J1 + J2 =

∫
B(θ0,δ)

fΘ(θ)fXn|Θ(Xn|θ) dθ +
∫
B(θ0,δ)c

fΘ(θ)fXn|Θ(Xn|θ) dθ.

Claim I.
J1

det(Σ)1/2fXn|Θ(Xn|Θ̂n)
→P (2π)k/2fΘ(θ0).

J1 = fXn|Θ(Xn|Θ̂n)
∫
B(θ0,δ)

fΘ(θ) exp
(
−1

2
(θ − Θ̂n)TΣ−1/2

n (Ik −Rn(θ,Xn))Σ−1/2
n (θ − Θ̂n) + ∆n

)
dθ

and therefore
(1− η)J3 <

J1

fΘ(θ0)fXn|Θ(Xn|Θ̂n)
< (1 + η)J3

where

J3 =
∫
B(θ0,δ)

exp
(
−1

2
(θ − Θ̂n)TΣ−1/2

n (Ik −Rn(θ,Xn))Σ−1/2
n (θ − Θ̂n) + ∆n

)
dθ.

Consider the events with limiting probability 1,

{∆n = 0} ∩ {
∫
B(θ0,δ)

exp
(
−1 + η

2
(θ − Θ̂n)TΣ−1

n (θ − Θ̂n)
)
dθ

≤ J3 ≤
∫
B(θ0,δ)

exp
(
−1− η

2
(θ − Θ̂n)TΣ−1

n (θ − Θ̂n)
)
dθ}.

These two integrals equal
(2π)k/2(1± η)−k/2det(Σn)1/2Φ(C±n ).

where Φ(C±n ) is the probability that a Nk(0, Ik) random variable takes values in

Cn = {z : Θ̂n + (1± η)−k/2Σ1/2
n z ∈ B(θ0, δ)}.
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By the condition on the largest eignevalue, we have for all z,

Σ1/2
n z →P 0 and hence Φ(C±n ) →P 1

as n→∞. Consequently,

lim
n→∞

P ′θ0{(2π)k/2
det(Σ)1/2

(1 + η)k/2
< J3 < (2π)k/2

det(Σ)1/2

(1− η)k/2
} = 1,

or
lim
n→∞

P ′θ0{(2π)k/2det(Σ)1/2(1− ε) <
J1

fΘ(θ0)fXn|Θ(Xn|Θ̂n)
< (2π)k/2det(Σ)1/2(1 + ε)} = 1.

Claim II.
J2

det(Σ)1/2fXn|Θ(Xn|Θ̂n)
→P 0.

Write
J2 = fXn|Θ(Xn|Θ̂n) exp(`n(θ0)− `n(Θ̂n))

∫
B(θ0,δ)c

fΘ(θ) exp(`n(θ)− `n(θ0)) dθ.

Because λn ≤ det(Σn)1/k, we have by the regularity conditions

`n(θ)− `n(θ0) < −det(Σn)−1/kK(δ).

Use this to bound the integral above by

exp(−det(Σn)−1/kK(δ))
∫
B(θ0,δ)

fΘ(θ) dθ ≤ exp(−det(Σn)−1/kK(δ)),

with probability tending to 1.
Because Θ̂n is a maximum likelihood estimator,

exp(`n(θ0)− `n(Θ̂n)) ≤ 1.

The condition on the largest eigenvalue guarantees us

exp(−det(Σn)−1/kK(δ))
det(Σn)1/2

→P 0

giving the claim.
Combining the claims gives

fXn
(Xn)

det(Σ)1/2fXn|Θ(Xn|Θ̂n)
→P (2π)k/2fΘ(θ0).

Because Θ̂n is consistent and the prior is continuous at θ0, we have that

fΘ(Σ1/2ψ + Θ̂n) →P fΘ(θ)

140



uniformly for ψ in a compact set.
Combine this with the results of the claims to obtain

det(Σ)1/2fXn|Θ(Xn|Θ̂n)fΘ(Σ1/2ψ + Θ̂n)
fXn(Xn)

→P (2π)−k/2

uniformly on compact sets.
To complete the proof, we need to show that the second fraction in the posterior density converges in

probability to exp(−||ψ||2/2) uniformly on compact sets. Referring to the Taylor expansion,

fXn|Θ(Xn|Σ1/2
n ψ + Θ̂n)

fXn|Θ(Xn|Θ̂n)
= exp

(
−1

2
(ψT (Ik −Rn(Σ1/2

n ψ + Θ̂n, Xn))ψ + ∆n)
)
.

Let η, ε > 0 and let K ⊂ B(0, k) be compact. Then by the regularity conditions. Choose δ and M so
that n ≥M implies

P ′θ0{ sup
θ∈B(θ0,δ),||γ||=1

|1 + γTΣ1/2
n H`n(θ)Σ1/2

n γ| < η

k
} > 1− ε

2
.

Now choose N ≥M so that n ≥ N implies

P ′θ0{Σ
1/2
n ψ + Θ̂n ∈ B(θ0, δ), for all ψ ∈ K} > 1− ε

2
.

Consequently, if n ≥ N ,

P ′θ0{|ψ
T (Ik −Rn(Σ1/2

n ψ + Θ̂n, Xn))ψ − ||ψ||2| < η for all ψ ∈ K} > 1− ε.

Because
lim
n→∞

P ′θ0{∆n = 0, for all ψ} = 1

the second fraction in the representation of the posterior distribution for Ψn is between

exp(−η) exp(−||ψ||2/2) and exp(η) exp(−||ψ||2/2)

with probability tending to 1, uniformly on compact sets.

Examples.

1. Let Y1, Y2, · · · be conditionally IID given Θ and set Xn = (Y1, · · · , Yn). In addition, suppose that the
Fisher information IX1(θ0).

• Because nΣn →P IX1(θ0)
−1, the largest eigenvalue of Σn goes to 0 in probability as n→∞.

• Using the notation from Wald’s theorem on consistency, we have

sup
θ∈B(θ0,δ)c

(`n(θ)− `n(θ0)) = − inf
θ∈B(θ0,δ)c

(`n(θ0)− `n(θ))

≤ − min
j=1,···,m

{− inf
θ∈Gj

(`n(θ0)− `n(θ))}

≤ − min
j=1,···,m

{
n∑
i=1

Z(Gj , Yi)}.
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Note that
1
n

n∑
i=1

Z(Gj , Yi) →P Eθ0 [Z(Gj , Yi)].

If these means are all postive, and if λ is the smallest eigenvalue of IY1(θ0), then take

K(δ) ≤ 1
2λ

min
j=1,···,m

{Eθ0 [Z(Gj , Yi)]}

• Recalling the conditions on the asymptotically normality of maximum likelihood estimators, let
ε > 0 and choose δ fo that

Eθ0 [Hδ(Yi, θ)] <
ε

µ+ ε

where µ is the largest eigenvalue of IY1(θ0). Let µn be the largest eigenvalue of Σn and θ ∈ B(θ0, δ).

sup
||γ=1||

|1 + γTΣ1/2
n H`n(θ)Σ1/2

n γ|

= sup
||γ||=1

|γTΣ1/2
n (Σ−1

n +H`n(θ)Σ1/2
n )γ| ≤ µn sup

||γ||=1

|γT (Σ−1
n +H`n(θ))γ|

≤ µ

(
sup
||γ||=1

|γT (Σ−1
n +H`n(θ0))γ|+ sup

||γ||=1

|γT (H`n(θ0)−H`n(θ0))γ|

)
If Θ̂n ∈ B(θ0, δ) and |µ− nµn| < ε, then the expression above is bounded above by

(µ+ ε)
2
n

n∑
i=1

Hδ(Yi, θ0)

which converges in probability to a value no greater than ε.

2. Let Ω = (−1, 1) and let Z1, Z2, · · · be independent standard normal random variables. Define the first
order autoregressive process

Yn = θYn−1 + Zn, n = 1, 2, · · · .

Let Xn = (Y1, · · · , Yn). Then

•

`n(θ) = k − 1
2
(Y 2
n + (1 + θ2)

n−1∑
i=1

Y 2
i − 2θ

n∑
i=1

YiYi−1).

•
Θ̂n =

∑n
i=1 YiYi−1∑n−1
i=1 Y

2
i

• Several of the regularity conditions can be satisfied by taking a prior having a positve continuous
density.
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•

`′′n(θ) = −
n∑
i=1

Y 2
i−1

does not depend on θ.

•
Covθ(Y 2

i , Y
2
i−k) = θ2kVarθ(Y 2

i−k) ≤
2θ2k

(1− θ2)2

and therefore

lim
n→∞

Varθ(
1
n

n∑
i=1

Y 2
i−1) = 0.

Consequently,
nΣn converges in probability and Σn →P 0.

• Under Pθ0 ,
1
n

n∑
i=1

YiYi−1 →P θ0.

•

`n(θ)− `n(θ0) = −θ − θ0
2

(
(θ + θ0)

∑
i = 1nY 2

i − 2
n∑
i=1

YiYi−1

)
.

3. Let Y1, Y2, · · · be conditionally IID given Θ = θ with Yi a N(θ, 1/i) random variable. Set Xn =
(Y1, · · · , Yn). Then, for some constant K,

•

`n(θ) = K − 1
2

(
n∑
i=1

log i+
1
i
(Yi − θ)2

)
.

•

Θ̂n =
n∑
i=1

Yi
i
/

n∑
i=1

1
i
.

•

`′′n(θ) = −
n∑
i=1

1
i

which does not depend on θ.

•

Σn = 1/
n∑
i=1

1
i
∼ 1

log n
.
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•

λn(`n(θ)− `n(θ0)) =
θ − θ0∑n
i=1 1/i

n∑
i=1

1
i
(Yi −

θ + θ0
2

).

and
n∑
i+1

Yi
i
/

n∑
i=1

1
i

is N(θ0, 1/
n∑
i=1

1
i
).

Thus,

λn(`n(θ)− `n(θ0)) →P −1
2
(θ − θ0)2.

• If the prior is continuous, the the remaining conditions are satisfied.

Note that Θ̂n is not
√
n consistent, but the posterior distribution is asymptotically normal.

8.5 Classical Chi-square Tests

Definition. Let Ω ⊂ Rp and let

ΩH = {θ = (θ1, · · · , θp) : θi = ci, 1 ≤ i ≤ k}.

Then the likelihood ratio criterion

Ln =
supθ∈ΩH

fX|Θ(x|θ)
supθ∈Ω fX|Θ(x|θ)

=
fX|Θ(x|Θ̂n,H)

fX|Θ(x|Θ̂n)

where

Θ̂n,H is the MLE of θ on ΩH and

Θ̂n is the (unrestricted) MLE.

Theorem. Assume the conditions in the theorem for the asymptotic normality of maximum likelihood
estimators and let Ln be the likelihood ratio criterion for

H : Θi = ci for all i = 1, · · · , k versus A : Θi 6= ci for all i = 1, · · · , k.

Then, under H
−2 logLn →D χ2

k

as n→∞.

For the case p = k = 1,

−2 logLn = −2`n(c) + 2`n(Θ̂n) = 2(c− Θ̂n)`n(Θ̂n) + (c− Θ̂n)2`′′m(θ∗n)
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for some θ∗n between c and Θ̂n. Note that `′n(Θ̂n) = 0 and under Pc,

1
n
`′′n(θ

∗
n) →P IX1(c),

√
n(c− Θ̂n) →D Z/IX1(c),

where Z is a standard normal random variable. Therefore,

−2 logLn →D Z2

which is χ2
1.

Proof. Let ψ0 be a p− k-dimensional vector and set(
c
ψ0

)
.

If the conditions of the theorem hold for Ω, then they also hold for ΩH . Write

Θ̂n,H =
(

c

Ψ̂n,H

)
Θ̂n,H =

(
ĉ

Ψ̂n

)
.

Then for some θ∗ between Θ̂n and Θ̂n,H ,

`n(Θ̂n,H) = `n(Θ̂n) + (Θ̂n,H − Θ̂n)T∇θ`n(Θ̂n) +
1
2
(Θ̂n,H − Θ̂n)TH`n(Θ̂n)(Θ̂n,H − Θ̂n).

In addition, for some θ̃n between θ0 and Θ̂n and some θ̃n,H between θ0 and Θ̂n,H ,

0 = ∇θ`n(Θ̂n) +Hθ`n(θ̃n)(Θ̂n − θ0)

and
0 = ∇ψ`n(Θ̂n,H) +Hψ`n(θ̃n,H)(Ψ̂n − θ0).

Write (
Ân B̂n
B̂Tn D̂n

)
=

1
n
Hθ`n(θ̃n) →P −IX1(θ0) =

(
A0 B0

BT0 D0

)
and

D̂n,H =
1
n
Hθ`n(θ̃n,H) →P D0.

Taking the last p− k coordinates form the first expansion and equating it to the second yields

D̂n,H = (Ψn,H − ψ0) = B̂Tn (ĉ− c) + D̂n(Ψ̂n − ψ0).

From the asymptotic normality of the MLE we have that
√
n(D0(Ψn,H − ψ0)− (BT0 (ĉ− c) +D0(Ψn − ψ0))).

or equivalently that √
n((Ψ̂n,H − Ψ̂n)−D−1

0 BT0 (ĉ− c))
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is bounded in probability. Therefore,

`n(Θ̂n,H)− `(Θ̂)− n

2

(
c− ĉ

D−1
0 BT0 (ĉ− c)

)T (
A0 B0

BT0 D0

)(
c− ĉ

D−1
0 BT0 (ĉ− c)

)
→P 0.

This last term simplifies to
n

2
(c− ĉ)(A0 −B0D

−1
0 BT0 )(c− ĉ).

The matrix A0 − B0D
−1
0 BT0 is the upper left k × k corner of −IX1(θ0)

−1, the asymptotic covariance of c.
Therefore independent of the choice of ψ0,

−2 logLn →D C2,

a χ2
k random variable

Theorem. Let Γ ⊂ Rk be a parameter space with parameter Ψ and let R1, · · · , Rp be a partition of X .
For i = 1, · · · , p, let

Yi =
n∑
j=1

IRi
(Xk)

be the number of observations in Ri (called the reduced data). Define

qi(ψ) = Pψ(Ri)

and
q(ψ) = (q1(ψ), · · · , qk(ψ)).

Assume that q ∈ C2(Γ) is one-to-one. Let Ψ̂n be the maximum likelihood estimate based on the reduced
data and let IX1(ψ) be the Fisher information matrix. Assume that

√
n(Ψ̂n − ψ) →D W

where W is a N(0, IX1(ψ)−1) random vector. Define

q̂i,n = qi(Ψ̂n)

and

Cn =
p∑
i=1

(Yi − nq̂i,n)2

q̂i,n
.

Then,
Cn →D C

where C is a χ2
p−k−1 random variable.
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9 Hierarchical Models

Definition. A sequence X1, X2, · · · of random variables is called exchangeable if the distribution of the
sequence is invariant under finite permutations.

DiFinetti’s theorem states that the sequence X1, X2, · · · can be represented as the mixture of IID se-
quences. Thus, the Bayes viewpoint is to decide using the data, what choice form the mixture is being
observed.

Hierarchical models requires a sense of partial exchangeability.

Definition. A sequence X1, X2, · · · of random variables is called marginally partially exchangeable if it
can be partitioned deterministically, into subsequences

X
(k)
1 , X

(k)
2 , · · · for k = 1, 2, · · · .

Example. (One way analysis of variance) Let {jn;n ≥ 1} be a sequence with each jn ∈ {0, 1}. Then

fX1 ···,Xn|M (x1, · · · , xn|µ) =
1

(2πσ)n/2
exp

(
− 1

2σ2
(
n∑
i=1

(xi − µ1−ji)
2

)
.

We introduce the general hierarchical model by considering a protocal in a series of clinical trials in which
several treatments are considered. The observations inside each treatment group are typically modeled as
exchangeable. If we view the treatment groups symmetrically prior to observing the data, then we may take
the set of parameters corresponding to different groups as a sample from another population. Thus, the
parameters are exchangeable. This second level parameters necessary to model the joint distribution of the
parameters are called the hyperparameters.

Denote the data by X, the parameters by Θ and the hyperparameters by Ψ, then the conditional density
of the parameters given the hyperparamters is

fΘ|X,Ψ(θ|x, ψ) =
fX|Θ,Ψ(x|θ, ψ)fΘ|Ψ(θ|ψ)

fX|Ψ(x|ψ)

where the density of the data given the hyperparameters alone is

fX|Ψ(x|ψ) =
∫
fX|Θ,Ψ(x|θ, ψ)fΘ|Ψ(θ|ψ) νΘ(dθ).

The marginal posterior distribution of the parameters can be found from

fΘ|X(θ|x) =
∫
fΘ|X,Ψ(θ|x, ψ)fΨ|X(ψ|x) νΨ(dψ)

where the posterior density of Ψ given X = x is

fΨ|X(ψ|x) =
fX|Ψ(x|ψ)fΨ(ψ)

fX(x)
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and the marginal density of X is

fX(x) =
∫
fX|Ψ(x|ψ)fΨ(ψ) νΨ(dψ).

Example.

1. Let Xi,j denote the observed response of the j-th subject in treatment group i = 1, · · · , k. We have
parameters

M = (M1, · · · ,Mk).

If (M1, · · · ,Mk) = (µ1, · · · , µk), we can model Xi,j as independent N(µi, 1) random variables. M itself
can be modeled as exhangeable N(Θ, 1) random variables. Thus, Θ is the hyperparameter.

2. Consider Xi,j denote the observed answer of the j-th person to a “yes-no” question in city i = 1, · · · , k.
The observations in a single city can be modeled as exhangeable Bernoulli random variables with
parameters

P = (P1, · · · , Pk).
These parameters can be modeled as Beta(A,B). Thus P is the parameter and (A,B) are the hyper-
parameters.

9.1 Normal Linear Models

For one-way analysis of variance (ANOVA), consider independent real valued observations

Xi,j , j = 1, · · · , ni, i = 1, · · · , k

that are N(µi, σ2) given M = (µ1, · · · , µn) and

M1, · · · ,Mk

are independent N(ψ, τ2) given Ψ = ψ and T = τ . We model Ψ as N(ψ0, τ
2/ζ0). The distribution of T and

the joint distribution of (Σ, T ) remained unspecified for now.

Thus

Stage Density

Data (2πσ2)−n/2 exp
(
− 1

2σ2

∑k
i=1(ni(x̄i − µi)2 + (n1 − 1)s2i )

)
Parameter (2πτ2)−k/2 exp

(
− 1

2τ2

∑k
i=1(µi − ψ)2

)
Hyperparameter (2πτ2/ζ0)−1/2 exp

(
− ζ0

2τ2 (ψ − ψ0)2
)

Variance fΣ,T (σ, τ)

From the usual updating of normal distributions, we see that, conditioned on (Σ, T,Ψ) = (σ, τ, ψ), the
posterior of M1, · · · ,Mk are independent

N(µi(σ, τ, ψ),
τ2σ2

niτ2 + σ2
), µi(σ, τ, ψ) =

nix̄iτ
2 + ψσ2

niτ2 + σ2
.
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Consequently, given (Σ, T,Ψ) = (σ, τ, ψ), the data X̄i and Si are independent with

X̄i, a N(ψ,
σ2

ni
+ τ2) random variable, and (ni − 1)

S2
i

σ2
, a χ2

ni−1 random variable.

This gives a posterior on Ψ conditioned on Σ = σ and T = τ that is

N

ψ1(σ, τ),

(
ζ0
τ2

+
k∑
i=1

ni
σ2 + τ2ni

)−1
 , where ψ1(σ, τ) =

ζ0ψ0
τ2 +

∑k
i=1

nix̄i

σ2+τ2ni

ζ0
τ2 +

∑k
i=1

ni

σ2+τ2ni

.

To find the posterior distribution of (Σ, T ), let X̄ = (X̄1, · · · , X̄k). Then, given (Σ, T ) = (σ, τ)

X̄ is N(ψ01,W (σ, τ))
ni − 1
σ

S2
i is χ2

ni−1,

where W (σ, τ) has diagonal elements

σ2

ni
+ τ2(1 +

1
ζ0

), i = 1, · · · , k.

and off diagonal elements
τ2

ζ0
.

Consequently,
fΣ,T |X̄,s21,···,S2

k
(σ, τ |x̄, s21, · · · , s2k)

is proportional to

fΣ,T (σ, τ)σ−(n1+···nk−k)det(W (σ, τ))−1/2 exp

(
−

k∑
i=1

(
s2i (ni − 1)

2σ2

)
− 1

2
(x̄− ψ01)TW−1(σ, τ)(x̄− ψ01)

)
.

This situation simplifies in the case

T =
Σ√
λ
.

In this case, write γ0 = λζ0, λi = λ+ ni, and γi = niλ/λi.
so that

µi(ψ, σ, τ) =
nix̄i + ψλ

λi
= µi(ψ),

τ2σ2

niτ2 + σ2
=
σ2

λi
, ψ1(σ, τ) =

γ0ψ0

∑k
i=1 γix̄i

γ0 +
∑k
i=1 γi

= ψ1,

ζ0
τ2

+
k∑
i=1

ni
σ2 + τ2ni

= γ0 +
k∑
i=1

γi.
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Therefore

W (σ, τ)ij =
1
γ0

+
(

1
λ

+
1
ni

)
δij

and after some computation

det(W (σ, τ)) = σ2k
k∏
i=1

1
γi

(1 +
1
γ0

l∑
j=1

γj).

With the prior Γ−1(a0/2, b0/2) for Σ2, we have the posterior Γ−1(a1/2, b1/2) with

a1 = a0 +
k∑
i=1

ni, |γ| =
k∑
i=1

γi, b1 = b0 +
k∑
i=1

((ni − 1)s3i + γi(x̄− u)2) +
|γ|γ0

γ0 + |γ|
(u− ψ0)2

where

|γ| =
k∑
i=1

γi, u =
k∑
i=1

γix̄i
|γ|

.

Posterior distributions for linear functions are now t distributions. For example

Ψ is ta1(ψ1,
b1
a1

1
γ + |γ|

), Mi is ta1(µi(ψ1),
b1
a1

(
1
λi

(
λ

λi

2 1
γ + γ∗

))
),

9.2 Bernoulli Process Data

The data from group i = 1, · · · , k is

• ni, the number of subjects, and

• Xi, the number of succeses.

The successes can be modeled by the success parameters

(P1, · · · , Pk).

The hyperparameters are (Θ, R) and given (Θ, R) = (θ, r), the parameters are independent

Beta(θr, (1− θ)r).

This random variable has

mean θ, and variance
θ(1− θ)
r + 1

.

Thus, θ is the mean value of the Pi. The larger R is, the more similar are the Pi. Given (Θ, R,X) = (θ, r, x).
the Pi are independent

Beta(θr + xi, (1− θ)r + ni − xi)

random variables.
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The posterior distribution of (Θ, R) is proportional to

fΘ,R(θ, r)
Γ(r)k

Γ(θr)kΓ((1− θ)r)k

k∏
i=1

Γ(θr + xi)Γ((1− θ)r + ni − xi)
Γ(r + ni)

The next step uses numerical techniques or approximations. One possible approximation for large ni is
to note that

d

dp
arcsin

√
p =

1
2
√
p(1− p)

,

and
Varg(Z) ≈ g′(µZ)2Var(Z)

to obtain

Yi = 2arcsin
√
Xi

ni
is approximately N(2 arcsin

√
pi,

1
ni

)

random variable.
Mi = 2arcsin

√
Pi is approximately N(µ,

1
τ

)

random variable given (M,T ) = (µ, τ) = (2 arcsin
√
θ, r + 1) Finally,

M is N(µ0,
1
λτ

),

and T is unspecified.

9.3 Empirical Bayes Analysis

The näıve approach to empirical Bayes analysis is to estimate the hyperparameters at some level of the
hierarchical model, treat them as known and use resulting posterior distributions for lower levels of the
hierarchy.

Examples

1. The simpliest empirical Bayes method is to estimate prior parameters by viewing the data x =
(x1, · · · , xn) as a sample from the marginal distribution of X given the hyperparameter Ψ on H.

Let X1, · · · , Xn in independent N(µ, σ2
0) random variables. Assume that σ2

0 is known and that µ has a
prior distribution that is N(µ0, τ

2). To obtain moment estimates of ψ = (µ0, τ
2), we need to calculate∫

Rn

x1fX(x) dx =
∫
Rn

∫
H

x1fX|Ψ(x|ψ)fΨ(ψ) dψdx =
∫
H

µfΨ(ψ) dψ = µ0,

and ∫
Rn

x2
1fX(x) dx =

∫
Rn

∫
H

x2
1fX|Ψ(x|ψ)fΨ(ψ) dψdx = σ2

0 +
∫
H

µ2fΨ(ψ) dψ = σ2
0 + µ2

0 + τ2.
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This gives moment estimates

µ̂0 = x̄ and τ̂2 =
1
n

n∑
i=1

(xi − x̄)2 − σ2
0

Under the usual Bayesian approach, the conditional distribution of µ given X = x is N(µ1(x), τ1(x)2)
where

µ1(x) =
σ0µ0 + nτ2x̄

nτ2 + σ2
0

, and τ1(x)2 =
τ2σ2

0

nτ2 + σ2
0

.

The empirical Bayes approach replaces µ0 with µ̂0 and τ0 with τ̂0. Note that τ̂2 can be negative.

2. In the case of one way analysis of variance, we can say that

X̄ is Nk(ψ01,W (σ, τ)), and (ni − 1)
S2
i

σ2
is χ2

ni−1

given (Ψ, T,Σ) = (ψ0, τ, σ). Set

Λ = Σ2/T 2 and n =
k∑
i=1

ni,

then the likelihood of (Ψ,Σ2,Λ) is

k∏
i=1

(
1
ni

+
1
λ

)−1/2

σ−n exp

(
− 1

2σ2

k∑
i=1

(
(x̄i − ψ)2

1/ni + 1/λ
+ (ni − 1)s2i

))
.

Fix σ2 and λ, then the expression above is maximized over ψ be taking

Ψ̂(λ) =
k∑
i=1

x̄i
1/ni + 1/λ

/
k∑
i=1

1
1/ni + 1/λ

.

Using this value for ψ and fixing λ, we see that the expression is maximized over σ2 by taking

Σ̂2(λ) =
1
n

k∑
i=1

(
(x̄i −Ψ(λ))2

1/ni + 1/λ
+ (ni − 1)s2i

)
.

Using this value for σ2 we obtain the function

k∏
i=1

(
1
ni

+
1
λ

)−1/2

Σ̂2(λ)−n/2

to obtain the MLE estimate Λ̂. Then set

Σ̂2 = Σ̂2(Λ̂) and Ψ̂ = Ψ̂(Λ̂).
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For the special case ni = m for all i,

Ψ̂(λ) =
1
k

k∑
i=1

x̄i,

which does not depend on λ. Set

γ =
1
m

+
1
λ
,

then

Σ̂2(γ) =
1
nγ

k∑
i=1

(x̄i − Ψ̂)2 +
m− 1
n

k∑
i=1

s2i .

Substitute this in for the likelihood above, and take the derivative of the logarithm to obtain

− k

2γ
+

n

2Σ̂2(γ)

∑k
i=1(x̄i − Ψ̂)2

nγ2
.

Setting this equal to zero gives

γ =
1

kΣ2(γ)

k∑
i=1

(x̄i − ψ)2

or

Γ̂ =
(n− k)

∑k
i=1(x̄i − ψ)2

k(m− 1)
∑l
i=1 s

2
i

=
k − 1
km

F

where F is an F -distribution.

Note that γ ≥ 1/m. If F < k/(k − 1), then the derivative above is negative at γ = 1/m and so the
maximum occurs at 1/m. Consequently, the maximum likelihood estimator

Λ̂ =
{ mk

(k−1)F−k if F > k
k−1

∞ otherwise.

Consequently, T̂ 2 = 0 if F ≤ k/(k − 1).

This näıve approach, because it estimates the hyperparameters and then takes them as known, underes-
timates the variances of the parameters. In the case on one way ANOVA, to reflect the fact that Ψ is not
known, the posterior variance of Mi should be increased by(

Σ4

niT 2 + Σ2

)2

Var(Ψ) =
(

Λ2

niT 2 + Λ

)2

Var(Ψ).

We can estimate Λ from the previous analysis and we can estimate Var(Ψ) by

1/
k∑
i=1

ni

Σ̂2 + niT̂ 2
.
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