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1 Form and Classification

We will move on the second order linear ordinary differential equations

a(x)y′′ + b(x)y′ + c(x)y = 0 (1)

where a, b, and c are analytical functions
The standard form (1) is

y′′ + p(x)y′ + q(x)y = 0 (2)

with

p(x) =
b(x)

a(x)
and q(x) =

c(x)

a(x)
.

A point x0 is called an ordinary point of equation (2) if both p and q are analytic at x0. If x0 is not
an ordinary point, it is called a singular point.

If a, b and c are analytic, then x0 is a regular point as long as a(x0) 6= 0. We can also include x0 as an
ordinary point if it has a removable singularity. For example, if a(x) = x and c(x) = sinx, then

q(x) =
sinx

x
.

So the singular can be removed by defining at x0 = 0

q(0) = lim
x→0

q(x) = 1.

and q is analytic at 0.
By examining 2), we can see continue taking derivatives, giving equations in higher and higher order

derivatives in y as function of the lower order derivatives of y and multiple derivatives of p and q. Thus, we
will use techniques based on the fact that the solution

y(x) =

∞∑
n=0

an(x− x0)n.

can be realized as a power series solution about an ordinary point x0.
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2 First Order Example

For the first order differential equation,
y′ + 2xy = 0,

the integrating factor is exp(x2). So the solution

y(x) = A exp(−x2) = A

∞∑
n=0

(−1)n

n!
x2n = A

(
1− x2 +

1

2
x4 − 1

6
x6 +

1

24
x8 − · · ·

)
.

Now, let’s look to develop the techniques that will lead to a series solution at x0 = 0.

y(x) =
∑∞

n=0 anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 · · · .

y′(x) =
∑∞

n=0 nanx
n−1 = a1 + 2a2x+ 3a3x

2 + 4a4x
3 · · · .

2xy(x) =
∑∞

n=0 anx
n+1 = 2a0x+ 2a1x

2 + 2a2x
3 + 2a3x

4 · · · .

To make the summation more transparent, we shift the indexing on the sums so that the powers on x
match.

y′(x) =
∑∞

n=0(n+ 1)an+1x
n = a1 + 2a2x+ 3a3x

2 + 4a4x
3 · · · .

2xy(x) =
∑∞

n=1 an−1x
n = 0 + 2a0x+ 2a1x

2 + 2a2x
3 + 2a3x

4 · · · .

0 = y′(x) + 2xy(x) = a1 +
∑∞

n=1((n+ 1)an+1 + 2an−1)xn = a1 + (2a2 + 2a0)x+ (3a3 + 2a1)x2 + (4a4 + 2a2)x3

By the uniqueness of power series, each of the coefficients of xn on the right side must equal 0. Thus,

a1 = 0, 2a2 + 2a0 = 0, 3a3 + 2a1 = 0 4a4 + 2a2 = 0 · · · (n+ 1)an+1 + 2an−1 = 0

We have written the first few instances of the recursion relation

(n+ 1)an+1 + 2an−1 = 0

or again by shift the indices

(n+ 2)an+2 + 2an = 0, an+2 = − 2

n+ 2
an.

Using the fact that a1 = 0 and the sequence of equations for the coefficients, we see that an = 0 for all odd
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values of n. For the even values of n

a2 = − 2
2a0 = −a0 = −a0

a4 = − 2
4a2 = − 1

2a2 = 1
2a0

a6 = − 2
6a4 = − 1

3a4 = − 1
3·2a0 = 1

3!a0

a8 = − 2
8a6 = − 1

4a6 = 1
4·3·2a0 = − 1

4!a0

... =
... =

... =
...

a2k = − 2
2ka2(k−1) = − 1

ka2(k−1) = (−1)k 1
k···3·2a0 = (−1)k 1

k!a0

3 Bessel Functions

Bessel functions were first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich
Bessel, as solutions

x2y′′ + xy′ + (x2 − α2)y = 0 (3)

the parameter α is called the the order of the Bessel equation and function.

y(x) =
∑∞

n=0 anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 · · · .

y′(x) =
∑∞

n=0 nanx
n−1 = a1 + 2a2x+ 3a3x

2 + 4a4x
3 · · · .

y′′(x) =
∑∞

n=0 n(n− 1)anx
n−2 = 2 · 1a2 + 3 · 2a3x+ 4 · 3a4x2 + 5 · 4a5x3 · · · .

Let’s look for a power series solution for the Bessel equation of order α = 0.

x2y(x) =
∑∞

n=0 anx
n+2 = a0x

2 + a1x
3 + a2x

4 + · · · .

xy′(x) =
∑∞

n=0 nanx
n = a1x+ 2a2x

2 + 3a3x
3 + 4a4x

4 · · · .

x2y′′(x) =
∑∞

n=0 n(n− 1)anx
n = 2 · 1a2x2 + 3 · 2a3x3 + 4 · 3a4x4 + · · · .

Again, we shift the indexing on the sums so that the powers on x match.

x2y(x) =
∑∞

n=2 an−2x
n = a0x

2 + a1x
3 + a2x

4 + · · · .

xy′(x) =
∑∞

n=1 nanx
n = a1x+ 2a2x

2 + 3a3x
3 + 4a4x

4 · · · .

x2y′′(x) =
∑∞

n=2 n(n− 1)anx
n = 2 · 1a2x2 + 3 · 2a3x3 + 4 · 3a4x4 + · · · .
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0 = x2y′′(x) + xy′(x) + x2y(0)

= a1x+
∑∞

n=2(an−2 + nan + n(n− 1)an−2)xn

= a1x+
∑∞

n=2(an−2 + n2an)xn

= a1x+ (a0) + (a0 + 22a2)x2 + (a1 + 32a3)x3 + · · ·
Thus,

a1 = 0, a0 + 22a2 = 0, a1 + 32a3 = 0, a2 + 42a4 = 0, · · · an−2 + n2an = 0.

Again, the recursion relations ensures that an = 0 for odd values of n. For the even values of n

a2 = − 1
22 a0 = − 1

22 a0

a4 = − 1
42 a2 = 1

42·22 a0 = 1
24(2·1)2 a0

a6 = − 1
62 a2 = 1

62·42·22 a0 = 1
26(3·2·1)2 a0

a8 = − 2
8a6 = 1

4·3·2a0 = − 1
4!a0

... =
... =

... =
...

−a2k = − 1
k2 a2(k−1) = (−1)k 1

22k(k!)2
a0

In writing (3) in the standard form (2)

y′′ +
1

x
y′ +

x2 − α2

x2
y = 0,

we see that x = 0 is a singular point. This will lead to the fact that (3) will have solutions that are unbounded
at x = 0. Bessel functions of the first kind, denoted as Jα(x), are solutions of that are finite at the origin
x = 0 for integer or positive α. The usual form for J0(x), has J0(0) = 1 and J ′0(0) = 0. Thus a0 = 1 and
a1 = 0.

We can write the solution as

J0(x) =

∞∑
k=0

(−1)k
1

22k(k!)2
x2k =

∞∑
k=0

(−1)k

(k!)2

(x
2

)2k
.

4 Equations with Analytic Coefficients

For p and q analytic function in equation (1) and x0 an ordinary point for this equation. Then (1) has two
linearly independent analytic solutions of the form

y(x) =

∞∑
n=0

an(x− x0)n.

The radius of convergence of any power series solution is at least as large as the distance from x0 to the
nearest singular point (real or complex-valued).
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Figure 1: Taylor approximations of the Bessel function or order 0. Second degree in brown, 4th in orange,
6th in blue, 8th in red and 10th in purple.

Exercise 1. Give the ensured radius of convergence about the ordinary point x0 = 0

• y′′ + 4x2y + y = 0

• (1 + x2)y′′ + 6xy + (sinx)y = 0

• (1 + x)y′′ + (1− x2)y + xy = 0

We can carry out the procedure for any case in which p and q are analytic. The process can be involve
if either p or q have a power series solutions with infinitely many terms. For example, take

y′′ + exy′ + (1 + x)y = 0,

then
(1 + x)y(x) = (1 + x)

∑∞
n=0 anx

n = a0 +
∑∞

n=1(an−1 + an)xn.

exy′(x) = (
∑∞

n=1 nanx
n)
(∑∞

n=0
1
n!x

n
)
.

y′′(x) =
∑∞

n=2 n(n− 1)anx
n−2

The process is in principle the same - give the Cauchy product to exy′(x), shift the summation indices,
if necessary, set the coefficients of xn to zero and develop recursion relations.
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