Power Series Solutions and Equations with Analytic Coefficients

June 28, 2016

1 Form and Classification

We will move on the second order linear ordinary differential equations

$$a(x)y'' + b(x)y' + c(x)y = 0$$
(1)

where a, b, and c are analytical functions

The standard form (1) is

$$y'' + p(x)y' + q(x)y = 0$$
(2)

with

$$p(x) = \frac{b(x)}{a(x)}$$
 and $q(x) = \frac{c(x)}{a(x)}$

A point x_0 is called an **ordinary point** of equation (2) if both p and q are analytic at x_0 . If x_0 is not an ordinary point, it is called a **singular point**.

If a, b and c are analytic, then x_0 is a regular point as long as $a(x_0) \neq 0$. We can also include x_0 as an ordinary point if it has a **removable singularity**. For example, if a(x) = x and $c(x) = \sin x$, then

$$q(x) = \frac{\sin x}{x}.$$

So the singular can be removed by defining at $x_0 = 0$

$$q(0) = \lim_{x \to 0} q(x) = 1.$$

and q is analytic at 0.

By examining 2), we can see continue taking derivatives, giving equations in higher and higher order derivatives in y as function of the lower order derivatives of y and multiple derivatives of p and q. Thus, we will use techniques based on the fact that the solution

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

can be realized as a power series solution about an ordinary point x_0 .

2 First Order Example

For the first order differential equation,

$$y' + 2xy = 0,$$

the integrating factor is $\exp(x^2)$. So the solution

$$y(x) = A \exp(-x^2) = A \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n} = A \left(1 - x^2 + \frac{1}{2}x^4 - \frac{1}{6}x^6 + \frac{1}{24}x^8 - \cdots \right).$$

Now, let's look to develop the techniques that will lead to a series solution at $x_0 = 0$.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$
$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 \cdots$$
$$2xy(x) = \sum_{n=0}^{\infty} a_n x^{n+1} = 2a_0 x + 2a_1 x^2 + 2a_2 x^3 + 2a_3 x^4 \cdots$$

To make the summation more transparent, we shift the indexing on the sums so that the powers on x match.

$$y'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 \cdots$$

$$2xy(x) = \sum_{n=1}^{\infty} a_{n-1}x^n = 0 + 2a_0x + 2a_1x^2 + 2a_2x^3 + 2a_3x^4 \cdots$$

$$0 = y'(x) + 2xy(x) = a_1 + \sum_{n=1}^{\infty} ((n+1)a_{n+1} + 2a_{n-1})x^n = a_1 + (2a_2 + 2a_0)x + (3a_3 + 2a_1)x^2 + (4a_4 + 2a_2)x^3$$

By the uniqueness of power series, each of the coefficients of x_n on the right side must equal 0. Thus,

 $a_1 = 0$, $2a_2 + 2a_0 = 0$, $3a_3 + 2a_1 = 0$ $4a_4 + 2a_2 = 0$ \cdots $(n+1)a_{n+1} + 2a_{n-1} = 0$

We have written the first few instances of the **recursion relation**

$$(n+1)a_{n+1} + 2a_{n-1} = 0$$

or again by shift the indices

$$(n+2)a_{n+2} + 2a_n = 0, \quad a_{n+2} = -\frac{2}{n+2}a_n$$

Using the fact that $a_1 = 0$ and the sequence of equations for the coefficients, we see that $a_n = 0$ for all odd

values of n. For the even values of n

$$a_{2} = -\frac{2}{2}a_{0} = -a_{0} = -a_{0}$$

$$a_{4} = -\frac{2}{4}a_{2} = -\frac{1}{2}a_{2} = \frac{1}{2}a_{0}$$

$$a_{6} = -\frac{2}{6}a_{4} = -\frac{1}{3}a_{4} = -\frac{1}{3\cdot 2}a_{0} = \frac{1}{3!}a_{0}$$

$$a_{8} = -\frac{2}{8}a_{6} = -\frac{1}{4}a_{6} = \frac{1}{4\cdot 3\cdot 2}a_{0} = -\frac{1}{4!}a_{0}$$

$$\vdots = \vdots = \vdots = \vdots = \frac{1}{3\cdot 2}a_{0} = -\frac{1}{4!}a_{0}$$

$$a_{2k} = -\frac{2}{2k}a_{2(k-1)} = -\frac{1}{k}a_{2(k-1)} = (-1)^{k}\frac{1}{k\cdots 3\cdot 2}a_{0} = (-1)^{k}\frac{1}{k!}a_{0}$$

3 Bessel Functions

Bessel functions were first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, as solutions

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$
(3)

•

the parameter α is called the the order of the Bessel equation and function.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$
$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 \cdots$$
$$y''(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2} = 2 \cdot 1a_2 + 3 \cdot 2a_3 x + 4 \cdot 3a_4 x^2 + 5 \cdot 4a_5 x^3 \cdots$$

Let's look for a power series solution for the Bessel equation of order $\alpha = 0$.

$$\begin{aligned} x^2 y(x) &= \sum_{n=0}^{\infty} a_n x^{n+2} &= a_0 x^2 + a_1 x^3 + a_2 x^4 + \cdots \\ xy'(x) &= \sum_{n=0}^{\infty} n a_n x^n &= a_1 x + 2a_2 x^2 + 3a_3 x^3 + 4a_4 x^4 \cdots \\ x^2 y''(x) &= \sum_{n=0}^{\infty} n(n-1)a_n x^n &= 2 \cdot 1a_2 x^2 + 3 \cdot 2a_3 x^3 + 4 \cdot 3a_4 x^4 + \cdots \end{aligned}$$

Again, we shift the indexing on the sums so that the powers on x match.

$$\begin{aligned} x^2 y(x) &= \sum_{n=2}^{\infty} a_{n-2} x^n &= a_0 x^2 + a_1 x^3 + a_2 x^4 + \cdots \\ xy'(x) &= \sum_{n=1}^{\infty} n a_n x^n &= a_1 x + 2a_2 x^2 + 3a_3 x^3 + 4a_4 x^4 \cdots \\ x^2 y''(x) &= \sum_{n=2}^{\infty} n(n-1)a_n x^n &= 2 \cdot 1a_2 x^2 + 3 \cdot 2a_3 x^3 + 4 \cdot 3a_4 x^4 + \cdots . \end{aligned}$$

$$0 = x^{2}y''(x) + xy'(x) + x^{2}y(0)$$

= $a_{1}x + \sum_{n=2}^{\infty} (a_{n-2} + na_{n} + n(n-1)a_{n-2})x^{n}$
= $a_{1}x + \sum_{n=2}^{\infty} (a_{n-2} + n^{2}a_{n})x^{n}$
= $a_{1}x + (a_{0}) + (a_{0} + 2^{2}a_{2})x^{2} + (a_{1} + 3^{2}a_{3})x^{3} + \cdots$

Thus,

 $a_1 = 0$, $a_0 + 2^2 a_2 = 0$, $a_1 + 3^2 a_3 = 0$, $a_2 + 4^2 a_4 = 0$, $\cdots \quad a_{n-2} + n^2 a_n = 0$.

Again, the recursion relations ensures that $a_n = 0$ for odd values of n. For the even values of n

$$a_{2} = -\frac{1}{2^{2}}a_{0} = -\frac{1}{2^{2}}a_{0}$$

$$a_{4} = -\frac{1}{4^{2}}a_{2} = \frac{1}{4^{2}\cdot2^{2}}a_{0} = \frac{1}{2^{4}(2\cdot1)^{2}}a_{0}$$

$$a_{6} = -\frac{1}{6^{2}}a_{2} = \frac{1}{6^{2}\cdot4^{2}\cdot2^{2}}a_{0} = \frac{1}{2^{6}(3\cdot2\cdot1)^{2}}a_{0}$$

$$a_{8} = -\frac{2}{8}a_{6} = \frac{1}{4\cdot3\cdot2}a_{0} = -\frac{1}{4!}a_{0}$$

$$\vdots = \vdots = \vdots = \vdots$$

$$-a_{2k} = -\frac{1}{k^{2}}a_{2(k-1)} = (-1)^{k}\frac{1}{2^{2k}(k!)^{2}}a_{0}$$

In writing (3) in the standard form (2)

$$y'' + \frac{1}{x}y' + \frac{x^2 - \alpha^2}{x^2}y = 0,$$

we see that x = 0 is a singular point. This will lead to the fact that (3) will have solutions that are unbounded at x = 0. Bessel functions of the first kind, denoted as $J\alpha(x)$, are solutions of that are finite at the origin x = 0 for integer or positive α . The usual form for $J_0(x)$, has $J_0(0) = 1$ and $J'_0(0) = 0$. Thus $a_0 = 1$ and $a_1 = 0$.

We can write the solution as

$$J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{2^{2k} (k!)^2} x^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} \left(\frac{x}{2}\right)^{2k}.$$

4 Equations with Analytic Coefficients

For p and q analytic function in equation (1) and x_0 an ordinary point for this equation. Then (1) has two linearly independent analytic solutions of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

The radius of convergence of any power series solution is at least as large as the distance from x_0 to the nearest singular point (real or complex-valued).

Figure 1: Taylor approximations of the Bessel function or order 0. Second degree in brown, 4th in orange, 6th in blue, 8th in red and 10th in purple.

Exercise 1. Give the ensured radius of convergence about the ordinary point $x_0 = 0$

- $y'' + 4x^2y + y = 0$
- $(1+x^2)y'' + 6xy + (\sin x)y = 0$
- $(1+x)y'' + (1-x^2)y + xy = 0$

We can carry out the procedure for any case in which p and q are analytic. The process can be involve if either p or q have a power series solutions with infinitely many terms. For example, take

$$y'' + e^x y' + (1+x)y = 0,$$

then

$$(1+x)y(x) = (1+x)\sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} (a_{n-1} + a_n)x^n$$
$$e^x y'(x) = (\sum_{n=1}^{\infty} na_n x^n) \left(\sum_{n=0}^{\infty} \frac{1}{n!} x^n\right).$$
$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

The process is in principle the same - give the Cauchy product to $e^x y'(x)$, shift the summation indices, if necessary, set the coefficients of x^n to zero and develop recursion relations.