Cauchy-Euler Equations and Method of Frobenius

June 28, 2016

Certain singular equations have a solution that is a series expansion. We begin this investigation with Cauchy-Euler equations.

1 Cauchy-Euler Equations

A second order Cauchy-Euler equation has the form

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

for constants a, b, and c. Thus, $x_{0}=0$ is a singular point.
If we try a solution of the form

$$
y(x)=x^{r}
$$

then

$$
0=a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=(a r(r-1)+b r+c) x^{r}=0 .
$$

Thus x^{r} is a solution if

$$
\begin{equation*}
\left.\operatorname{ar}(r-1)+b r+c=a r_{(}^{2} b-c\right) r+c=0 \tag{2}
\end{equation*}
$$

The equation (2) is called the indicial or characteristic equation.
Example 1. For

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

the indicial equation is

$$
0=r(r-1)-4 r+6=r^{2}-5 r+6=(r-2)(r-3)
$$

and

$$
y_{1}(x)=x^{2} \quad \text { and } \quad y_{2}(x)=x^{3}
$$

are linearly independent solutions.
As with the constant coefficient equations, we have two additional considerations.

- If the roots in (2) are repeated, i.e., the indicial equation is $a\left(r-r_{0}\right)^{2}$, then the two solutions to (1) are

$$
y_{1}(x)=x^{r_{0}} \quad \text { and } \quad y_{2}(x)=x^{r_{0}} \ln x
$$

- If the roots in (2) are complex conjugates, $\alpha \pm i \beta$, then the hen the two solutions to (1) are

$$
y_{1}(x)=x^{\alpha} \cos (\beta \ln x) \quad \text { and } \quad y_{2}(x)=x^{\alpha} \sin (\beta \ln x) .
$$

Exercise 2. - Show that

$$
\begin{gathered}
y_{(}(x)=c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln x \\
4 x^{\prime} y^{\prime \prime}+y=0
\end{gathered}
$$

- Show that

$$
y(x)=\frac{1}{x}\left(c_{1} \sin (2 \ln x)+c_{2} \cos (2 \ln x)\right)
$$

is a general solution to

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+5 y=0
$$

This last equation show different behavior possible in Cauchy-Euler equations. The solutions are unbounded and oscillate more and more rapidly near $x=0$.

2 Method of Frobenius

We moved from second order constant coefficient ordinary differential equations to differential equations having coefficients that are analytic functions of x. The method of Frobenius make a similar generalization from the Cauchy-Euler equations.

In this case, we start with

$$
\begin{equation*}
a(x) x^{2} y^{\prime \prime}+b(x) x y^{\prime}+c(x) y=0 \tag{3}
\end{equation*}
$$

and divide so that we have

$$
\begin{aligned}
y^{\prime \prime}+\frac{b(x)}{x a(x)} y^{\prime}+\frac{c(x)}{x^{2} a(x)} y & =0 \\
y^{\prime \prime}+p(x) y^{\prime}+q(x) y & =0
\end{aligned}
$$

So,

$$
x p(x)=\frac{b(x)}{a(x)} \quad \text { and } \quad x^{2} q(x)=\frac{c(x)}{a(x)} .
$$

If we have the limits

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} \frac{b(x)}{a(x)}=p_{0} \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} \frac{c(x)}{a(x)}=q_{0}
$$

Then, for x near zero,

$$
p(x) \approx x p_{0} \quad \text { and } \quad q(x) \approx x^{2} q_{0}
$$

the solutions to (3) should be similar to the Cauchy-Euler equation

$$
\begin{align*}
y^{\prime \prime}+\frac{p_{0}}{x} y^{\prime}+\frac{q_{0}}{x^{2}} y & =0 \\
x^{2} y^{\prime \prime}+x p_{0} y^{\prime}+q_{0} y & =0 \tag{4}
\end{align*}
$$

We turn these observations into a definition.
A singular point x_{0} of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

is said to be a regular singular point if both

$$
\left(x-x_{0}\right) p(x) \quad \text { and } \quad\left(x-x_{0}\right)^{2} q(x)
$$

are analytic at x_{0} Otherwise x_{0} is called an irregular singular point.
Returning to (4), we again have an indicial equation

$$
r(r-1)+p_{0} r+q_{0}=0
$$

The roots of the indicial equation are called the exponents or indices of the singularity x_{0}.
Example 3. For the Bessel differential equation

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y & =0, \quad \alpha \geq 0 \\
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{x^{2}-\alpha^{2}}{x^{2}} y & =0 \tag{5}
\end{align*}
$$

To see that $x_{0}=0$ is a regular singular point, note that

$$
\lim _{x \rightarrow 0} x p(x)=1 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=-\alpha^{2}
$$

The indicial equation is

$$
0=r(r-1)+r-\alpha^{2}=r^{2}-\alpha^{2}
$$

So the roots are $\pm \alpha$
To begin, let's assume that this equation has distinct real roots, r_{-}and r_{+}. The method of Forbenius suggests that we look for solutions of the form

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

For each of the roots to lead to distinct powers, the difference $r_{+}-r_{-}$cannot be an integer.
We apply this to Bessel's equation (5) by first writing series expansions for y, y^{\prime} and $y^{\prime \prime}$.

$$
\begin{array}{rlrl}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+\alpha} & =a_{0} x^{\alpha}+a_{1} x^{1+\alpha}+a_{2} x^{2+\alpha}+a_{3} x^{3+\alpha}+a_{4} x^{4+\alpha}+\cdots \\
y^{\prime}(x) & =\sum_{n=0}^{\infty}(n+\alpha) a_{n} x^{n+\alpha-1} & =\alpha a_{0} x^{\alpha-1}+(1+\alpha) a_{1} x^{\alpha}+(2+\alpha) a_{2} x^{1+\alpha}+(3+\alpha) a_{3} x^{2+\alpha}+\cdots \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} x^{n+\alpha-2} & & =\alpha(\alpha-1) a_{0} x^{\alpha-2}+(1+\alpha) \alpha a_{1} x^{\alpha-1}+(2+\alpha)(1+\alpha) a_{2} x^{\alpha}+\cdots .
\end{array}
$$

For Bessel's equation

$$
\begin{array}{rlrl}
-\alpha^{2} y(x) & =-\sum_{n=0}^{\infty} \alpha^{2} a_{n} x^{n+\alpha} & =-\alpha^{2} a_{0} x^{\alpha}-\alpha^{2} a_{1} x^{1+\alpha}-\alpha^{2} a_{2} x^{2+\alpha}-\alpha^{2} a_{3} x^{3+\alpha}-\alpha^{2} a_{4} x^{4+\alpha}+\cdots . \\
x^{2} y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+\alpha+2} & =a_{0} x^{2+\alpha}+a_{1} x^{3+\alpha}+a_{2} x^{4+\alpha}+a_{3} x^{5+\alpha}+\cdots \\
x y^{\prime}(x) & =\sum_{n=0}^{\infty}(n+\alpha) a_{n} x^{n+\alpha} & & =\alpha a_{0} x^{\alpha}+(1+\alpha) a_{1} x^{1+\alpha}+(2+\alpha) a_{2} x^{2+\alpha}+(3+\alpha) a_{3} x^{4+\alpha}+\cdots \\
x^{2} y^{\prime \prime}(x) & =\sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} x^{n+\alpha} & & =\alpha(\alpha-1) a_{0} x^{\alpha}+(1+\alpha) \alpha a_{1} x^{\alpha+1}+(2+\alpha)(1+\alpha) a_{2} x^{\alpha+2}+\cdots
\end{array}
$$

To line up the indices, we adjust the expression for the $x^{2} y(x)$ term.

$$
x^{2} y(x)=\sum_{n=2}^{\infty} a_{n-2} x^{n+\alpha}=a_{0} x^{2+\alpha}+a_{1} x^{3+\alpha}+a_{2} x^{4+\alpha}+a_{3} x^{5+\alpha}+\cdots .
$$

and add. Notice that the sum on the x^{α} term is

$$
-\alpha^{2} a_{0}+\alpha a_{0}+\alpha(\alpha-1) a_{0}=0
$$

. So, a_{0} is arbitrary. For the $x^{\alpha+1}$ term

$$
-\alpha^{2} a_{1}+(1+\alpha) a_{1}+(1+\alpha) \alpha a_{1}=0, \quad(2 \alpha+1) x_{1}=0, \quad \text { and } \quad a_{1}=0
$$

For the powers of $x^{n+\alpha}$ we have that

$$
\begin{aligned}
0 & =(n+\alpha)(n+\alpha-1) a_{n}+(n+\alpha) a_{n}-\alpha^{2} a_{n}+a_{n+2} \\
& =\left((n-\alpha)^{2}-\alpha^{2} a\right)_{n}+a_{n+2} \\
& =(n+2 \alpha) n a_{n}+a_{n-2}
\end{aligned}
$$

From this we see that the terms a_{n} for n odd vanish. Also, notice this recursion relation agrees with the case $\alpha=0$ determined earlier.

For the even values of n

$$
\begin{aligned}
a_{2} & =-\frac{1}{2(2+2 \alpha)} a_{0}
\end{aligned} \begin{aligned}
a_{4} & =-\frac{1}{2(2+2 \alpha)} a_{0} \\
a_{6} & =-\frac{1}{6(4+2 \alpha)} a_{2}
\end{aligned} \begin{aligned}
& 4(4+2 \alpha)=\frac{1}{4} a_{2} \\
& a_{8}=-\frac{2}{8(6+2 \alpha) \cdot 4(4+2 \alpha) \cdot 2(2+2 \alpha)} a_{0}=\frac{1}{\left.2^{6}(3 \cdot) 2 \cdot 1\right)(3+\alpha)(2+\alpha)(1+\alpha} a_{0}=\frac{1}{2^{4}(2 \cdot 1)(2+\alpha)(1+\alpha} a_{0} \\
& \vdots=\frac{1}{4 \cdot 3 \cdot 2} a_{0}=-\frac{1}{4!} a_{0} \\
&-=\quad \vdots \quad= \\
&-a_{2 k}=-\frac{1}{k^{2}} a_{2(k-1)} \\
&=(-1)^{k} \frac{1}{2^{2 k} k!(k+\alpha)_{k}} a_{0}
\end{aligned}
$$

The term $(a)_{k}=a(a-1) \cdots(a-k+1)$ is called the falling factorial and is read " x falling k ".
Thus, $a_{0} J_{\alpha}(x)$ is a solution to (5) where

$$
J_{\alpha}(x)=\sum_{n=0}^{\infty}(-1)^{k} \frac{1}{2^{2 k} k!(k+\alpha)_{k}} x^{2 k}=\sum_{n=0}^{\infty}(-1)^{k} \frac{1}{k!(k+\alpha)_{k}}\left(\frac{x}{2}\right)^{2 k}
$$

