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Certain singular equations have a solution that is a series expansion. We begin this investigation with
Cauchy-Euler equations.

1 Cauchy-Euler Equations

A second order Cauchy-Euler equation has the form

ax2y′′ + bxy′ + cy = 0 (1)

for constants a, b, and c. Thus, x0 = 0 is a singular point.
If we try a solution of the form

y(x) = xr,

then
0 = ax2y′′ + bxy′ + cy = (ar(r − 1) + br + c)xr = 0.

Thus xr is a solution if
ar(r − 1) + br + c = ar2( b− c)r + c = 0 (2)

The equation (2) is called the indicial or characteristic equation.

Example 1. For
x2y′′ − 4xy′ + 6y = 0,

the indicial equation is
0 = r(r − 1)− 4r + 6 = r2 − 5r + 6 = (r − 2)(r − 3).

and
y1(x) = x2 and y2(x) = x3

are linearly independent solutions.

As with the constant coefficient equations, we have two additional considerations.

• If the roots in (2) are repeated, i.e., the indicial equation is a(r − r0)2, then the two solutions to (1)
are

y1(x) = xr0 and y2(x) = xr0 lnx.
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• If the roots in (2) are complex conjugates, α± iβ, then the hen the two solutions to (1) are

y1(x) = xα cos(β lnx) and y2(x) = xα sin(β lnx).

Exercise 2. • Show that
y(x) = c1

√
x+ c2

√
x lnx

4x′y′′ + y = 0

• Show that

y(x) =
1

x
(c1 sin(2 lnx) + c2 cos(2 lnx))

is a general solution to
x2y′′ + 3xy′ + 5y = 0

This last equation show different behavior possible in Cauchy-Euler equations. The solutions are un-
bounded and oscillate more and more rapidly near x = 0.

2 Method of Frobenius

We moved from second order constant coefficient ordinary differential equations to differential equations
having coefficients that are analytic functions of x. The method of Frobenius make a similar generalization
from the Cauchy-Euler equations.

In this case, we start with
a(x)x2y′′ + b(x)xy′ + c(x)y = 0 (3)

and divide so that we have

y′′ +
b(x)

xa(x)
y′ +

c(x)

x2a(x)
y = 0

y′′ + p(x)y′ + q(x)y = 0

So,

xp(x) =
b(x)

a(x)
and x2q(x) =

c(x)

a(x)
.

If we have the limits

lim
x→0

xp(x) = lim
x→0

b(x)

a(x)
= p0 and lim

x→0
x2q(x) = lim

x→0

c(x)

a(x)
= q0.

Then, for x near zero,
p(x) ≈ xp0 and q(x) ≈ x2q0,

the solutions to (3) should be similar to the Cauchy-Euler equation

y′′ +
p0
x
y′ +

q0
x2
y = 0

x2y′′ + xp0y
′ + q0y = 0 (4)
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We turn these observations into a definition.

A singular point x0 of the differential equation

y′′ + p(x)y′ + q(x)y = 0

is said to be a regular singular point if both

(x− x0)p(x) and (x− x0)2q(x)

are analytic at x0 Otherwise x0 is called an irregular singular point.
Returning to (4), we again have an indicial equation

r(r − 1) + p0r + q0 = 0.

The roots of the indicial equation are called the exponents or indices of the singularity x0.

Example 3. For the Bessel differential equation

x2y′′ + xy′ + (x2 − α2)y = 0, α ≥ 0

y′′ +
1

x
y′ +

x2 − α2

x2
y = 0 (5)

To see that x0 = 0 is a regular singular point, note that

lim
x→0

xp(x) = 1 and lim
x→0

x2q(x) = −α2.

The indicial equation is
0 = r(r − 1) + r − α2 = r2 − α2

So the roots are ±α

To begin, let’s assume that this equation has distinct real roots, r− and r+. The method of Forbenius
suggests that we look for solutions of the form

y(x) = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

For each of the roots to lead to distinct powers, the difference r+ − r− cannot be an integer.

We apply this to Bessel’s equation (5) by first writing series expansions for y, y′ and y′′.

y(x) =
∑∞
n=0 anx

n+α = a0x
α + a1x

1+α + a2x
2+α + a3x

3+α + a4x
4+α + · · · .

y′(x) =
∑∞
n=0(n+ α)anx

n+α−1 = αa0x
α−1 + (1 + α)a1x

α + (2 + α)a2x
1+α + (3 + α)a3x

2+α + · · · .

y′′(x) =
∑∞
n=0(n+ α)(n+ α− 1)anx

n+α−2 = α(α− 1)a0x
α−2 + (1 + α)αa1x

α−1 + (2 + α)(1 + α)a2x
α + · · · .

For Bessel’s equation
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−α2y(x) = −
∑∞
n=0 α

2anx
n+α = −α2a0x

α − α2a1x
1+α − α2a2x

2+α − α2a3x
3+α − α2a4x

4+α + · · · .

x2y(x) =
∑∞
n=0 anx

n+α+2 = a0x
2+α + a1x

3+α + a2x
4+α + a3x

5+α + · · · .

xy′(x) =
∑∞
n=0(n+ α)anx

n+α = αa0x
α + (1 + α)a1x

1+α + (2 + α)a2x
2+α + (3 + α)a3x

4+α + · · · .

x2y′′(x) =
∑∞
n=0(n+ α)(n+ α− 1)anx

n+α = α(α− 1)a0x
α + (1 + α)αa1x

α+1 + (2 + α)(1 + α)a2x
α+2 + · · · .

To line up the indices, we adjust the expression for the x2y(x) term.

x2y(x) =
∑∞
n=2 an−2x

n+α = a0x
2+α + a1x

3+α + a2x
4+α + a3x

5+α + · · · .

and add. Notice that the sum on the xα term is

−α2a0 + αa0 + α(α− 1)a0 = 0

. So, a0 is arbitrary. For the xα+1 term

−α2a1 + (1 + α)a1 + (1 + α)αa1 = 0, (2α+ 1)x1 = 0, and a1 = 0.

For the powers of xn+α we have that

0 = (n+ α)(n+ α− 1)an + (n+ α)an − α2an + an+2

= ((n− α)2 − α2a)n + an+2

= (n+ 2α)nan + an−2

From this we see that the terms an for n odd vanish. Also, notice this recursion relation agrees with the
case α = 0 determined earlier.

For the even values of n

a2 = − 1
2(2+2α)a0 = − 1

2(2+2α)a0

a4 = − 1
4(4+2α)a2 = 1

4(4+2α)·2(2+2α)a0 = 1
24(2·1)(2+α)(1+αa0

a6 = − 1
6(6+2α)a2 = 1

6(6+2α)·4(4+2α)·2(2+2α)a0 = 1
26(3·)2·1)(3+α)(2+α)(1+αa0

a8 = − 2
8a6 = 1

4·3·2a0 = − 1
4!a0

... =
... =

... =
...

−a2k = − 1
k2 a2(k−1) = (−1)k 1

22kk!(k+α)k
a0

The term (a)k = a(a− 1) · · · (a− k + 1) is called the falling factorial and is read “x falling k”.
Thus, a0Jα(x) is a solution to (5) where

Jα(x) =

∞∑
n=0

(−1)k
1

22kk!(k + α)k
x2k =

∞∑
n=0

(−1)k
1

k!(k + α)k

(x
2

)2k
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