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1 Basic Concepts

The random variables X1, X2, . . . , Xn are called a a random sample or independent and identically
distributed if they are independent and have a common distribution.

Let f denote the density (mass) function of a single random variable in the sample Consequently, the
joint density (mass) function is the product of the marginal density (mass) functions

fX1....,Xn
(x1, . . . , xn) = f(x1) · · · f(xn) =

n∏
i=1

f(xi).

A set of observations x1, x2, . . . , xn from this distribution is called the data.
If we are examining a member of a parametric family of random variables, then we migth write

fX1....,Xn(x1, . . . , xn|θ) = f(x1|θ) · · · f(xn|θ) =
n∏
i=1

f(xi|θ).

Example 1. • For Bernoulli random variables with parameter p,

fX1....,Xn
(x1, . . . , xn|θ) =

n∏
i=1

px1(1− p)1−xi = p
Pn

i=1 x1(1− p)1−
Pn

i=1 xi .

• For normal random variables with mean µ and variance σ2,

fX1....,Xn
(x1, . . . , xn|θ) =

n∏
i=1

1√
2πσ2

exp− (xi − µ)2

2σ2
=

1
(2πσ2)n/2

exp− 1
2σ2

n∑
i=1

(xi − µ)2.

A summary T (x1, x2, . . . , xn) of the data is called a statistic. The distribution of the random variable
T (X1, X2, . . . , Xn) is called the sampling distribution. Note that the statistic cannot be a function of the
parameter.

Example 2 (statistics). • The maximum

T (x1, x2, . . . , xn) = max{x1, x2, . . . , xn}.

1



• The sample mean is the arithmetic average of the data.

x̄ =
1
n

(x1 + x2 + · · ·+ xn) =
1
n

n∑
i=1

xi.

• A weighted sample mean with weights wi is

T (x1, x2, . . . , xn) =
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
.

• The sample variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2.

2 Sums of Random Variables

We begin with a little algebra.

n∑
i=1

(xi − a)2 =
n∑
i=1

((xi − x̄) + (x̄− a))2
n∑
i=1

(xi − x̄)2 + 2
n∑
i=1

(xi − x̄)(x̄− a) +
n∑
i=1

(x̄− a))2

=
n∑
i=1

(xi − x̄)2 +
n∑
i=1

(x̄− a)2

because the cross term equals to zero.
Take a = x̄ to see that

min
a

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄)2.

Take a = 0 to see that

s2 =
1

n− 1

(
n∑
i=1

x2
i − nx̄2

)
.

For the random sample, X1, X2, . . . , Xn, we also have the identities

1. E [
∑n
i=1 g(Xi)] = nEg(X1) provided that Eg(X1) exists.

2. Var (
∑n
i=1 g(Xi)) = nVar(g(X1)) provided that Var(g(X1)) exists.

For a random sample with mean µ and variance σ2, these identities lead us to

1. EX̄ = 1
nE [

∑n
i=1Xi] = 1

nnµ = µ.

2. Var(X̄) = 1
n2 Var(

∑n
i=1Xi) = 1

n2nσ
2 = σ2

n .
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3. The mean of the sample variance

ES2 =
1

n− 1
E

[
n∑
i=1

X2
i − nX̄2

]
=

1
n− 1

(nEX2
1 − nEX̄2)

=
n

n− 1

(
(σ2 + µ2)−

(
σ2

n
+ µ2

))
=

n

n− 1

(
1− 1

n

)
σ2 = σ2.

If we have that
Eθ[T (X1, X2, . . . , Xn)] = k(θ),

then we say that T (x1, x2, . . . , xn) is an unbiased estimator of k(θ). Thus,

1. x̄ is an unbiased estimator of the mean µ.

2. s2 is an unbiased estimator of the variance σ2.

For the moment generating function of X̄,

MX̄(t) = E[exp tX̄] = E[exp
t

n
(X1 +X2 + · · ·+Xn)]

= E[exp
t

n
X1]E[exp

t

n
X2] · · ·E[exp

t

n
Xn] = MX1

(
t

n

)n
Example 3. 1. For a sample of normal random variables with mean µ and variance σ2,

MX1(t) = exp tµ+
t2

2
σ2.

Thus,

MX̄ =
(

exp
t

n
µ+

t2

2n2
σ2

)n
= exp tµ+

t2

2n
σ2

and X̄ is normal, mean µ and variance σ2/n.

2. For a sample of gamma random variables with parameters α and β

MX1(t) = (1− βt)−α.

Thus,

MX̄ = (1− β t
n

)−nα

and X̄ is a gamma random variable with parameters nα and β/n
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