Random Samples

November 5, 2009

1 Basic Concepts

The random variables $X_1, X_2, ..., X_n$ are called a **a random sample** or **independent and identically** distributed if they are independent and have a common distribution.

Let f denote the density (mass) function of a single random variable in the sample Consequently, the joint density (mass) function is the product of the marginal density (mass) functions

$$f_{X_1,...,X_n}(x_1,...,x_n) = f(x_1)\cdots f(x_n) = \prod_{i=1}^n f(x_i).$$

A set of observations x_1, x_2, \ldots, x_n from this distribution is called the **data**. If we are examining a member of a parametric family of random variables, then we might write

$$f_{X_1,...,X_n}(x_1,...,x_n|\theta) = f(x_1|\theta) \cdots f(x_n|\theta) = \prod_{i=1}^n f(x_i|\theta).$$

Example 1. • For Bernoulli random variables with parameter p,

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|\theta) = \prod_{i=1}^n p^{x_1} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_1} (1-p)^{1-\sum_{i=1}^n x_i}.$$

• For normal random variables with mean μ and variance σ^2 ,

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|\theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i-\mu)^2}.$$

A summary $T(x_1, x_2, ..., x_n)$ of the data is called a **statistic**. The distribution of the random variable $T(X_1, X_2, ..., X_n)$ is called the **sampling distribution**. Note that the statistic cannot be a function of the parameter.

Example 2 (statistics). • The maximum

$$T(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}.$$

• The sample mean is the arithmetic average of the data.

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

• A weighted sample mean with weights w_i is

$$T(x_1, x_2, \dots, x_n) = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}.$$

• The sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

2 Sums of Random Variables

We begin with a little algebra.

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - a))^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - a) + \sum_{i=1}^{n} (\bar{x} - a))^2$$
$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (\bar{x} - a)^2$$

because the cross term equals to zero.

Take $a = \bar{x}$ to see that

$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Take a = 0 to see that

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right).$$

For the random sample, X_1, X_2, \ldots, X_n , we also have the identities

- 1. $E\left[\sum_{i=1}^{n} g(X_i)\right] = nEg(X_1)$ provided that $Eg(X_1)$ exists.
- 2. $\operatorname{Var}\left(\sum_{i=1}^n g(X_i)\right) = n\operatorname{Var}(g(X_1))$ provided that $\operatorname{Var}(g(X_1))$ exists.

For a random sample with mean μ and variance σ^2 , these identities lead us to

1.
$$E\bar{X} = \frac{1}{n}E\left[\sum_{i=1}^{n} X_i\right] = \frac{1}{n}n\mu = \mu.$$

2.
$$Var(\bar{X}) = \frac{1}{n^2} Var(\sum_{i=1}^n X_i) = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$
.

3. The mean of the sample variance

$$\begin{split} ES^2 &= \frac{1}{n-1} E\left[\sum_{i=1}^n X_i^2 - n\bar{X}^2\right] = \frac{1}{n-1} (nEX_1^2 - nE\bar{X}^2) \\ &= \frac{n}{n-1} \left((\sigma^2 + \mu^2) - \left(\frac{\sigma^2}{n} + \mu^2\right) \right) = \frac{n}{n-1} \left(1 - \frac{1}{n} \right) \sigma^2 = \sigma^2. \end{split}$$

If we have that

$$E_{\theta}[T(X_1, X_2, \dots, X_n)] = k(\theta),$$

then we say that $T(x_1, x_2, \dots, x_n)$ is an **unbiased estimator** of $k(\theta)$. Thus,

- 1. \bar{x} is an unbiased estimator of the mean μ .
- 2. s^2 is an unbiased estimator of the variance σ^2 .

For the moment generating function of \bar{X} ,

$$M_{\bar{X}}(t) = E[\exp t\bar{X}] = E[\exp \frac{t}{n}(X_1 + X_2 + \dots + X_n)]$$
$$= E[\exp \frac{t}{n}X_1]E[\exp \frac{t}{n}X_2] \dots E[\exp \frac{t}{n}X_n] = M_{X_1}\left(\frac{t}{n}\right)^n$$

Example 3. 1. For a sample of normal random variables with mean μ and variance σ^2 ,

$$M_{X_1}(t) = \exp t\mu + \frac{t^2}{2}\sigma^2.$$

Thus,

$$M_{\bar{X}} = \left(\exp\frac{t}{n}\mu + \frac{t^2}{2n^2}\sigma^2\right)^n = \exp t\mu + \frac{t^2}{2n}\sigma^2$$

and \bar{X} is normal, mean μ and variance σ^2/n .

2. For a sample of gamma random variables with parameters α and β

$$M_{X_1}(t) = (1 - \beta t)^{-\alpha}$$
.

Thus,

$$M_{\bar{X}} = (1 - \beta \frac{t}{n})^{-n\alpha}$$

and \bar{X} is a gamma random variable with parameters $n\alpha$ and β/n