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1 Basic Concepts

The random variables X7, X5,..., X, are called a a random sample or independent and identically

distributed if they are independent and have a common distribution.
Let f denote the density (mass) function of a single random variable in the sample Consequently, the

joint density (mass) function is the product of the marginal density (mass) functions
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A set of observations x1, zs,...,x, from this distribution is called the data.
If we are examining a member of a parametric family of random variables, then we migth write
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Example 1. e For Bernoulli random variables with parameter p,
n
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e For normal random variables with mean p and variance o2,
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A summary T'(z1, z2,...,z,) of the data is called a statistic. The distribution of the random variable
T(Xy,Xs,...,X,) is called the sampling distribution. Note that the statistic cannot be a function of the

parameter.
Example 2 (statistics). e The mazimum

T(x1,xa,...,2,) = max{x1, Ta,...,Tp}.



e The sample mean is the arithmetic average of the data.
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e A weighted sample mean with weights w; is
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e The sample variance
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2 Sums of Random Variables

We begin with a little algebra.

because the cross term equals to zero.
Take a = Z to see that
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Take a = 0 to see that
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For the random sample, X1, X, ..., X,, we also have the identities

1. E[>"", 9(X;)] = nEg(X:) provided that Eg(X;) exists.

2. Var (31, g(X;)) = nVar(g(X;)) provided that Var(g(X;)) exists.

For a random sample with mean z and variance o2, these identities lead us to

1. EX = %E Do X = %nu = L.

2. Var(X) = L Var(3[_; X;) = 7zno? =
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3. The mean of the sample variance
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Ey[T(X1, Xo, ..., Xp)] = k(0),
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If we have that

then we say that T'(z1,x2,...,2,) is an unbiased estimator of k(6). Thus,
1. Z is an unbiased estimator of the mean p.
2. s? is an unbiased estimator of the variance o2.

For the moment generating function of X,
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Example 3. 1. For a sample of normal random variables with mean u and variance o2,
t2
My, (t) =exptu+ 502.
Thus,

t 2 L\" 2,
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and X is normal, mean p and variance o2 /n.
2. For a sample of gamma random variables with parameters o and
M, (t) = (1= pt)~".

Thus,

Mg =(1- o)™

and X is a gamma random variable with parameters na and 3/n



