Linear Algebra Basics

June 29, 2016

1 Matrix Algebra Operations

Example 1. For $i=1,2$ and $j=1,2,3$, let

$$
a_{i j}
$$

be the quantity store i orders of product j, We can write this conveniently as a matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)
$$

If the price of these objects is x_{1}, x_{2}, x_{3} we can write this as a column vector

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

The total bill for each store

$$
\left(\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{array}\right)
$$

is simply the matrix product of the matrix A with the vector \mathbf{x} and write $A \mathbf{x}$.
Let look at this in a more abstract setting.

- Let $C_{i j}$ denote the entry in the i-th row and j-th column of a matrix C.
- Matrices can be multiplied by a scalar a. So, the matrix $a C$ has $i j$ entry

$$
(a C)_{i j}=a C_{i j}
$$

- If two matrices, A and B have the same number of rows and columns, then we can form their sum $A+B$ with

$$
(A+B)_{i j}=A_{i j}+B_{i j} .
$$

- A matrix A with r_{A} rows and c_{A} and a matrix B with r_{B} rows and c_{B} columns can be multiplied to form a matrix $A B$ provide that $c_{A}=r_{B}$, the number of columns in A equals the number of rows in B. In this case

$$
(A B)_{i j}=\sum_{k=1}^{c_{A}} A_{i k} B_{k j} .
$$

Exercise 2. Let

$$
A=\left(\begin{array}{cccc}
1 & 3 & 3 & -1 \\
0 & 8 & 12 & 2 \\
3 & 2 & 0 & 2 \\
1 & 0 & 0 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
4 & 6 & 1 & 0 \\
2 & 3 & 1 & 4
\end{array}\right)
$$

Find $A B$ and $B A$

- Matrix multiplication is associative

$$
(A B) C=A(B C)
$$

and distributive

$$
A(B+C)=A B+A C
$$

- The transpose of a matrix is obtained by reversing the rows and columns of a matrix. We use a superscript T to indicate the transpose. Thus, the $i j$ entry of a matrix C is the $j i$ entry of its transpose, C^{T}.

Example 3.

$$
\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 2 & 7
\end{array}\right)^{T}=\left(\begin{array}{ll}
2 & 4 \\
1 & 2 \\
3 & 7
\end{array}\right)
$$

- The d-dimensional identity matrix I is the matrix with the value 1 for all entries on the diagonal ($\left.I_{j j}=1, j=1 \ldots, d\right)$ and 0 for all other entries.

Exercise 4. d-dimensional vector x,

$$
I x=x .
$$

- A $d \times d$ matrix C is called invertible with inverse C^{-1} provided that

$$
C C^{-1}=C^{-1} C=I
$$

Only one matrix can have this property.

- Suppose we have a d-dimensional vector a of known values and a $d \times d$ matrix C and we want to determine the vectors x that satisfy

$$
b=C x
$$

This equation could have no solutions, a single solution, or an infinite number of solutions. If the matrix C is invertible, then we have a single solution

$$
x=C^{-1} b . \quad\left(C^{-1} b=C^{-1}(C x)=\left(C^{-1} C\right) x=I x=x\right)
$$

2 Solving Linear Equations

We will perform the task of finding the matrix inverse using Gaussian elimination or the Gauss-Jordan algorithm. The operations on matrices that are permitted are:

- Row switching

A row within the matrix can be switched with another row.

$$
R_{i} \leftrightarrow R_{j}
$$

- Row multiplication

Each element in a row can be multiplied by a non-zero constant.

$$
k R_{i} \rightarrow R_{i}, \text { where } k \neq 0
$$

- Row addition

A row can be replaced by the sum of that row and a multiple of another row.

$$
R_{i}+k R_{j} \rightarrow R_{i}, \text { where } i \neq j
$$

Example 5. For

$$
\begin{array}{rll}
x_{1} & +5 x_{2} & =7 \\
-2 x_{1} & -7 x_{2} & =-5
\end{array}
$$

we write the augmented matrix $(A \mid x)$.

$$
\left(\begin{array}{cc|c}
1 & 5 & 7 \\
-2 & -7 & -5
\end{array}\right)
$$

Then $2 R_{1}+R_{2} \rightarrow R_{2}$

$$
\left(\begin{array}{ll|l}
1 & 5 & 7 \\
0 & 3 & 9
\end{array}\right)
$$

Then $R_{2} / 3$

$$
\left(\begin{array}{ll|l}
1 & 5 & 7 \\
0 & 1 & 3
\end{array}\right)
$$

Then $-5 R_{2}+R_{1} \rightarrow R_{1}$

$$
\left(\begin{array}{cc|c}
1 & 0 & -8 \\
0 & 1 & 3
\end{array}\right)
$$

Thus $x_{1}=-8$ and $x_{2}=3$
Let's reproduce these computation using the augmented matrix $(A \mid I)$ we write the augmented matrix $(A \mid x)$.

$$
\left(\begin{array}{cc|cc}
1 & 5 & 1 & 0 \\
-2 & -7 & 0 & 1
\end{array}\right)
$$

Then $2 R_{1}+R_{2} \rightarrow R_{2}$

$$
\left(\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
0 & 3 & 2 & 1
\end{array}\right)
$$

Then $R_{2} / 3$

$$
\left(\begin{array}{cc|cc}
1 & 5 & 1 & 0 \\
0 & 1 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Then $-5 R_{2}+R_{1} \rightarrow R_{1}$

$$
\left(\begin{array}{cc|cc}
1 & 0 & -7 / 3 & -5 / 3 \\
0 & 1 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Exercise 6. Verify that

$$
A^{-1}=\left(\begin{array}{cc}
-7 / 3 & -5 / 3 \\
2 / 3 & 1 / 3
\end{array}\right)
$$

and that

$$
A^{-1}\binom{7}{-5}=\binom{-8}{3}
$$

Exercise 7. Find the solution to the linear system

$$
\begin{array}{rccl}
x_{2} & +x_{3} & =-8 \\
x_{1} & -2 x_{2} & -3 x_{2} & =0 \\
-x_{1} & +x_{2} & 2 x_{3} & =3
\end{array}
$$

3 Determinants

We will consider the concept of the determinant in the case of 2×2 and 3×3 matrices. A square matrix C of any dimension is invertible if and only if its determinant $\operatorname{det}(C) \neq 0$.

For a 2×2 matrix

$$
C=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$\operatorname{det}(C)=a d-b c$ and the matrix inverse

$$
C^{-1}=\frac{1}{\operatorname{det}(C)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

We can verify this using the Gauss-Jordan algorithm.
Exercise 8. Use the formula above to obtain the inverse to

$$
A=\left(\begin{array}{cc}
1 & 5 \\
-2 & -7
\end{array}\right)
$$

For a three by three matrix, the determinant is

$$
c_{11} \operatorname{det}\left(\begin{array}{cc}
c_{22} & c_{23} \\
c_{32} & c_{33}
\end{array}\right)-c_{12} \operatorname{det}\left(\begin{array}{cc}
c_{21} & c_{23} \\
c_{31} & c_{33}
\end{array}\right)+c_{13} \operatorname{det}\left(\begin{array}{ll}
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right)
$$

For larger matrices, we have the same alternating form based on linear combinations of determinants from minors, matrices created by eliminating the first row and a column. Beyond its computational use, The determinant's value is summarized in the following theorem.

Theorem 9. Let C be a $d \times d$ matrix. The following statements are equivalent:

1. C is singular (does not have an inverse).
2. The determinant of C is zero.
3. $C x=0$ has nontrivial solutions $(x=0)$.
4. The columns (rows) of C form a linearly dependent set.
