Review of Probability Theory II

January 29-31, 2008

1 Expectation

If the sample space \(\Omega = \{ \omega_1, \omega_2, \ldots \} \) is countable and \(g \) is a real-valued function, then we define the expected value or the expectation of a function \(f \) of \(X \) by

\[
E_g(X) = \sum_i g(X(\omega_i))P\{\omega_i\}.
\]

To create a formula for discrete random variables, write \(R(x) \) for the set of \(\omega \) so that \(X(\omega) = x \), then the sum above can be written

\[
E_g(X) = \sum_x \sum_{\omega \in R(x)} g(X(\omega))P\{\omega\} = \sum_x \sum_{\omega \in R(x)} g(x)P\{\omega\} = \sum_x g(x)P\{\omega; X(\omega) = x\} = \sum_x g(x)p(x).
\]

provided that the sum converges absolutely. Here \(p \) is the mass function for \(X \).

For a continuous random variable, with distribution function \(F \) and density \(f \), choose a small positive value \(\Delta x \), and let \(\tilde{X} \) be the random variable obtained by rounding the value of \(X \) down to the nearest integer multiple of \(\Delta x \), then

\[
E_g(\tilde{X}) = \sum_{\tilde{x}} g(\tilde{x})P\{\tilde{X} = \tilde{x}\} = \sum_{\tilde{x}} g(\tilde{x})P\{\tilde{x} \leq X < \tilde{x} + \Delta x\} = \sum_{\tilde{x}} g(\tilde{x})(F(\tilde{x} + \Delta x) - F(\tilde{x})) \\
\approx \sum_{\tilde{x}} g(\tilde{x})f(\tilde{x})\Delta x \approx \int_{-\infty}^{+\infty} g(x)f(x) \, dx.
\]

Provided that the integral converges absolutely, these approximations become an equality in the limit as \(\Delta x \to 0 \).

Exercise 1. Let \(X_1 \) and \(X_2 \) be random variables on a countable sample space \(\Omega \) having a common state space Let \(g_1 \) and \(g_2 \) be two real valued functions on the state space and two numbers \(c_1 \) and \(c_2 \). Then

\[
E[c_1 g_1(X_1) + c_2 g_2(X_2)] = c_1 E g_1(X_1) + c_2 E g_2(X_2).
\]
Several choice for g have special names.

1. If $g(x) = x$, then $\mu = EX$ is call variously the mean, and the first moment.

2. If $g(x) = x^k$, then EX^k is called the k-th moment.

3. If $g(x) = (x)_k$, where $(x)_k = x(x-1) \cdots (x-k+1)$, then $E(X)_k$ is called the k-th factorial moment.

4. If $g(x) = (x-\mu)^k$, then $E(X-\mu)^k$ is called the k-th central moment.

5. The second central moment $\sigma^2 = E(X-\mu)^2$ is called the variance. Note that $\text{Var}(X) = E(X-\mu)^2 = EX^2 - 2\mu EX + \mu^2 = EX^2 - 2\mu^2 + \mu^2 = EX^2 - \mu^2$.

6. If X is \mathbb{R}^d-valued and $g(x) = e^{i\langle \theta, x \rangle}$, where $\langle \cdot, \cdot \rangle$ is the standard inner product, then $\phi(\theta) = Ex^{i\langle \theta, X \rangle}$ is called the Fourier transform or the characteristic function.

7. Similarly, if X is \mathbb{R}^d-valued and $g(x) = e^{i\langle \theta, x \rangle}$, then $m(\theta) = Ex^{i\langle \theta, X \rangle}$ is called the Laplace transform or the moment generating function.

8. If X is \mathbb{Z}^+-valued and $g(x) = z^x$, then $\rho(z) = Ez^X = \sum_{x=0}^{\infty} P\{X = x\}z^x$ is called the (probability) generating function.

Table of Discrete Random Variables

<table>
<thead>
<tr>
<th>random variable</th>
<th>parameters</th>
<th>mean</th>
<th>variance</th>
<th>generating function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>p</td>
<td>p</td>
<td>$p(1-p)$</td>
<td>$(1-p) + pz$</td>
</tr>
<tr>
<td>binomial</td>
<td>n, p</td>
<td>np</td>
<td>$np(1-p)$</td>
<td>$(1-p) + pz)^n$</td>
</tr>
<tr>
<td>hypergeometric</td>
<td>N, n, k</td>
<td>nk</td>
<td>$nk(\frac{N-k}{N})(\frac{N-n}{N-1})$</td>
<td></td>
</tr>
<tr>
<td>geometric</td>
<td>p</td>
<td>$\frac{1-p}{p}$</td>
<td>$\frac{1-p}{p^2}$</td>
<td>$\frac{p}{1-(1-p)z}$</td>
</tr>
<tr>
<td>negative binomial</td>
<td>a, p</td>
<td>$a\frac{1-p}{p}$</td>
<td>$a\frac{1-p}{p^2}$</td>
<td>$\left(\frac{p}{1-(1-p)z}\right)^a$</td>
</tr>
<tr>
<td>Poisson</td>
<td>λ</td>
<td>λ</td>
<td>λ</td>
<td>$\exp(-\lambda(1-z))$</td>
</tr>
<tr>
<td>uniform</td>
<td>a, b</td>
<td>$\frac{b-a+1}{2}$</td>
<td>$\frac{(b-a+1)^2-1}{12}$</td>
<td>$\frac{z^a-1}{b-a+1}$ \frac{1-z^{b-a+1}}{1-z}$</td>
</tr>
</tbody>
</table>
Table of Continuous Random Variables

<table>
<thead>
<tr>
<th>random variable</th>
<th>parameters</th>
<th>mean</th>
<th>variance</th>
<th>characteristic function</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>α, β</td>
<td>$\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}$</td>
<td>$\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$</td>
<td>$F_{1,1}(a, b; \frac{\theta}{2\pi})$</td>
</tr>
<tr>
<td>Cauchy</td>
<td>μ, σ^2</td>
<td>none</td>
<td>none</td>
<td>$\exp(i \mu \theta - \frac{\sigma^2}{2})$</td>
</tr>
<tr>
<td>chi-squared</td>
<td>a</td>
<td>a</td>
<td>$2a$</td>
<td>$\frac{1}{(1 - 2i \theta)^{a/2}}$</td>
</tr>
<tr>
<td>exponential</td>
<td>λ</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{\lambda^2}$</td>
<td>$\frac{\lambda}{\theta + i \lambda}$</td>
</tr>
<tr>
<td>F</td>
<td>q, a</td>
<td>$\frac{a}{a - 2}, a > 2$</td>
<td>$2a^2 \frac{q^{a-2}}{q(a-3)(a-2)^2}$</td>
<td></td>
</tr>
<tr>
<td>gamma</td>
<td>α, β</td>
<td>$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$</td>
<td>$\left(\frac{i \beta}{\theta + i \beta}\right)^a$</td>
<td></td>
</tr>
<tr>
<td>Laplace</td>
<td>μ, σ</td>
<td>μ</td>
<td>$2\sigma^2$</td>
<td>$\exp(i \mu \theta - \frac{\pi \sigma^2 \theta^2}{2})$</td>
</tr>
<tr>
<td>normal</td>
<td>μ, σ^2</td>
<td>μ</td>
<td>σ^2</td>
<td>$\exp(i \mu \theta - \frac{\pi \sigma^2 \theta^2}{2})$</td>
</tr>
<tr>
<td>Pareto</td>
<td>α, c</td>
<td>$\frac{c \alpha}{a - 1}, a > 1$</td>
<td>$\frac{c^2 \alpha}{(a-2)(a-1)^2}$</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>a, μ, σ^2</td>
<td>$\mu, a > 1$</td>
<td>$\sigma^2 \frac{a}{a^2 - 1}, a > 1$</td>
<td>$-\frac{i \exp(i \theta b) - \exp(i \theta a)}{\theta (b-a)}$</td>
</tr>
<tr>
<td>uniform</td>
<td>a, b</td>
<td>$\frac{a+b}{2}$</td>
<td>$\frac{(b-a)^2}{12}$</td>
<td>$-i \frac{\exp(i \theta b) - \exp(i \theta a)}{\theta (b-a)}$</td>
</tr>
</tbody>
</table>

2 Joint Distributions and Conditioning

A pair of random variables X_1 and X_2 is called independent if for every pair of events A_1, A_2,

$$P\{X_1 \in A_1, X_2 \in A_2\} = P\{X_1 \in A_1\} P\{X_2 \in A_2\}. \tag{8}$$

For their distribution functions, F_{X_1} and F_{X_2}, (8) is equivalent to factoring of the joint distribution function

$$F(x_1, x_2) = F_{X_1}(x_1) F_{X_2}(x_2),$$

to the factoring of joint density for continuous random variables

$$f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2),$$

to the factoring of the joint mass function for discrete random variables

$$p(x_1, x_2) = p_{X_1}(x_1) p_{X_2}(x_2),$$

and, finally, to the factoring of expectations

$$E g_1(X_1) g_2(X_2) = E g_1(X_1) E g_2(X_2).$$

Definition 2. For a pair of random variables X_1 and X_2, the **covariance** with means μ_1 and μ_2 is defined by

$$\text{Cov}(X_1, X_2) = E(X_1 - \mu_1)(X_2 - \mu_2) = EX_1 X_2 - \mu_1 \mu_2.$$

In particular, if X_1 and X_2 are independent, then $\text{Cov}(X_1, X_2) = 0$.

The correlation

$$\rho(X_1, X_2) = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}(X_1) \text{Var}(X_2)}}.$$
Exercise 3. \(\text{Var}(X_1 + \cdots + X_n) = \sum_{i=1}^n \sum_{j=1}^n \text{Cov}(X_i, X_j). \)

For a pair of jointly continuous random variables, the **marginal density** of \(X \) is

\[
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy.
\]

The **conditional density** of \(Y \) given \(X \) is

\[
f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}.
\]

The **conditional expectation** is the expectation using the conditional density.

\[
E[g(Y)|X=x] = \int_{-\infty}^{+\infty} g(y)f_{Y|X}(y|x) \, dy.
\]

Similar expression marginal mass function and conditional mass function, replacing integrals by sums, exists for discrete random variables. The **conditional mass function** of \(Y \) given \(X \) is

\[
p_{Y|X}(y|x) = \frac{p(x, y)}{p_X(x)}.
\]

The **conditional expectation** is the expectation using the conditional density.

\[
E[g(Y)|X=x] = \sum_y g(y)p_{Y|X}(y|x).
\]

3 Law of Large Numbers

The law of large numbers states that the long term empirical average of independent random variables \(X_1, X_2, \ldots \) having a common distribution function \(F \) possessing a mean \(\mu \).

In words, we have with probability 1,

\[
\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n) = \frac{1}{n}S_n \to \mu \text{ as } n \to \infty.
\]

We can define the **empirical distribution function**

\[
\bar{F}_n(x) = \frac{1}{n} \# \text{ (observations from } X_1, X_2, \ldots, X_n \text{ that are less than or equal to } x) \\
= \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i).
\]

Then, by the strong law, we have with probability 1,

\[
\bar{F}_n(x) \to F(x) \text{ as } n \to \infty.
\]

The **Glivenko-Cantelli theorem** states that this convergence is uniform in \(x \).
4 Central Limit Theorem

For the situation above, we have that

\[\bar{X}_n - \mu \to 0 \quad \text{as} \quad n \to \infty \]

with probability 1.

The central limit theorem states that if we magnify the difference by a factor of \(\sqrt{n} \), then we see convergence of the distributions to a normal random variable.

Definition 4. A sequence of distribution functions \(\{F_n; n \geq 1\} \) is said to **converge in distribution** to the distribution function \(F \) if

\[\lim_{n \to \infty} F_n(x) = F(x) \]

whenever \(x \) is a continuity point for \(F \).

Theorem 5 (Central Limit Theorem). If the sequence \(\{X_n; n \geq 1\} \) introduced above has common variance \(\sigma^2 \), then

\[\lim_{n \to \infty} P \left(\frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu) \leq z \right) = \Phi(z) \]

where \(\Phi \) is the distribution function of a standard normal random variable.

We often write

\[\frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu) = \frac{S_n - n\mu}{\sigma \sqrt{n}}. \]

5