Homogeneous Liner Systems with Constant Coefficients

July 1, 2016

The object of study in this section is

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{1}
\end{equation*}
$$

where A is a $d \times d$ constant matrix whose entries are real numbers.
As before, we will look to the exponential function for solutions.

$$
\mathbf{x}(t)=e^{r t} \mathbf{u}
$$

where $\mathbf{u} \neq 0$ is a d-dimensional column vector and r is a number. Substituting into (1), we find that

$$
r e^{r t} \mathbf{u}=A e^{r t} \mathbf{u}=e^{r t} A \mathbf{u}
$$

Therefore,

$$
r \mathbf{u}=A \mathbf{u} \quad \text { and } \quad(A-r I) \mathbf{u}=0
$$

For $\mathbf{u} \neq 0$, we must have non-trivial solutions to this algebraic equation and consequently the determinant

$$
\operatorname{det}(A-r I)=0 .
$$

Let's give names to the concepts that this calculations generate. For a $d \times d$ constant matrix A,

- The eigenvalues or characteristic values of A are those (possibly complex) values r for which

$$
(A-r I) \mathbf{u}=0
$$

has at least one non-trivial solution.

- The corresponding solutions \mathbf{u} are called the eigenvectors or characteristic vectors of A associated with r. Note that any non-zero scalar multiple of a eigenvector is an eigenvector.
- The determinant $p(r)=\operatorname{det}(A-r I)$ is a polynomial of degree $d . p(r)$ is called the characteristic polynomial of A and $p(r)=0$ is called the characteristic equation of A.
We will see that ehe characteristic equation plays a role for systems similar to the role played by the auxiliary equation for scalar equations.
Example 1. Let $A(t)$ be the constant matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right),
$$

the characteristic polynomial

$$
p(r)=\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}
1-r & 2 \\
2 & 1-r
\end{array}\right)=(1-r)^{2}-4
$$

The characteristic equation

$$
(1-r)^{2}-4=0
$$

has solutions

$$
r_{1}=-1 \quad \text { and } \quad r_{2}=3
$$

To find eigenvectors, we find non-trivial solutions to

$$
\begin{gathered}
\left(\begin{array}{cc}
1-r_{1} & 2 \\
2 & 1-r_{1}
\end{array}\right) \mathbf{u}_{1}=0 \quad \text { and } \quad\left(\begin{array}{cc}
1-r_{2} & 2 \\
2 & 1-r_{2}
\end{array}\right) \mathbf{u}_{2}=0 \\
\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \mathbf{u}_{1}=0 \quad \text { and } \quad\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right) \mathbf{u}_{2}=0
\end{gathered}
$$

Thus, solutions are

$$
\mathbf{u}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{u}_{1}=\binom{1}{1}
$$

Thus,

$$
\mathbf{x}(t)=c_{1} e^{t} \mathbf{u}_{1}+c_{2} e^{3 t} \mathbf{u}_{2}
$$

is a general solution.
Exercise 2. Find a general solution to (1) for

$$
A=\left(\begin{array}{ll}
2 & 3 \\
4 & 3
\end{array}\right)
$$

Give the fundamental matrix and determine the solution that satisfies

$$
\mathbf{x}(0)=\mathbf{x}_{0}=\binom{-1}{1}
$$

We now give an examplw with $d=3$.
Example 3. To determine a general solution to (1) for

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right)
$$

we first compute the characteristic polynomial.

$$
\begin{aligned}
p(r) & =\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{ccc}
-r & 1 & 1 \\
1 & -2-r & -3 \\
-1 & 1 & 2-r
\end{array}\right) \\
& =-r \cdot \operatorname{det}\left(\begin{array}{cc}
-2-r & -3 \\
1 & 2-r
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & -3 \\
-1 & 2-r
\end{array}\right)+1 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & -2-r \\
-1 & 1
\end{array}\right) \\
& =-r((-2-r)(2-r)-(-3))-1((2-r)-(-3)(-1))+(1-(-2-r)(-1)) \\
& =-r\left(-4+r^{2}+3\right)-(2-r-3)+(1-2-r)=-r\left(r^{2}-1\right)+(r+1)-(r+1)=-r\left(r^{2}-1\right) \\
& =-r(r-1)(r+1)
\end{aligned}
$$

The characteristic equation $p(r)=0$ has roots,

$$
r_{1}=-1, \quad r_{2}=0, \quad \text { and } \quad r_{3}=1
$$

For the eigenvectors,

$$
\left(A-r_{1} I\right)=\left(\begin{array}{ccc}
-r_{1} & 1 & 1 \\
1 & -2-r_{1} & -3 \\
-1 & 1 & 2-r_{1}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -3 \\
-1 & 1 & 3
\end{array}\right)
$$

Check that we can take $\mathbf{u}_{1}=\left(\begin{array}{ll}1 & -21\end{array}\right)$.
For $r_{2}=0,\left(A-r_{2} I\right)=A$. Check that we can take $\mathbf{u}_{2}=(1-11)$ For the eigenvectors,

$$
\left(A-r_{3} I\right)=\left(\begin{array}{ccc}
-r_{3} & 1 & 1 \\
1 & -2-r_{3} & -3 \\
-1 & 1 & 2-r_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -3 & -3 \\
-1 & 1 & 1
\end{array}\right)
$$

Check that we can take $\mathbf{u}_{3}=(01-1)$. The general soluiion is

$$
\mathbf{x}(t)=e^{-t} \mathbf{u}_{1}+\mathbf{u}_{2}+c_{3} e^{-t} \mathbf{u}_{3} .
$$

1 Complex Eigenvalues

To start with some notation. With $z=a+i b$ is a complex number, the we write the complex conjugate $\bar{z}=a-i b$.

Exercise 4. - A constant c is real if and only if $\bar{c}=c$

- $\overline{z_{1} \cdot z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$.

A constant a is real is to have $\bar{a}=a$. We extend this notation to vectors and matrices. Thus, a matrix A has real-valued entries if and only if $\bar{A}=A$.

Suppose that two solutions to the characteristic equation $p(r)=0$ are $r_{ \pm}=\alpha \pm i \beta$. Thus, $r_{-}=\bar{r}_{+}$.
If $\mathbf{u}=\mathbf{a}+i \mathbf{b}$ is an eigenvector for A with eigenvalue r_{+}. Here \mathbf{a} and \mathbf{b} are real-valued vectors. Then,

$$
0=\left(A-r_{+} I\right)(\mathbf{a}+i \mathbf{b})
$$

Now take the complex conjugate of this equation, noting that $\bar{A}=A$ and $\bar{I}=I$.

$$
0=\overline{\left(A-r_{+} I\right)(\mathbf{a}+i \mathbf{b})}=\left(A-r_{-} I\right)(\mathbf{a}-i \mathbf{b})
$$

showing that $\mathbf{a}-i \mathbf{b}$ is an eigenvector for A with eigenvalue r_{-}. Thus, we have two linearly independent
solutions

$$
\begin{aligned}
\tilde{\mathbf{x}}_{1}(t) & =e^{(\alpha+i \beta) t}(\mathbf{a}+i \mathbf{b}) \\
& =e^{\alpha t}(\cos \beta t+i \sin \beta t)(\mathbf{a}+i \mathbf{b}) \\
& =e^{\alpha t}((\cos \beta t \mathbf{a}-\sin \beta t \mathbf{b})+i(\sin \beta t \mathbf{a}+\cos \beta t \mathbf{b})) \\
& =\mathbf{x}_{1}(t)+i \mathbf{x}_{2}(t) \\
\tilde{\mathbf{x}}_{2}(t) & =e^{(\alpha-i \beta) t}(\mathbf{a}-i \mathbf{b}) \\
& =e^{\alpha t}(\cos \beta t-i \sin \beta t)(\mathbf{a}-i \mathbf{b}) \\
& =e^{\alpha t}((\cos \beta t \mathbf{a}-\sin \beta t \mathbf{b})-i(\sin \beta t \mathbf{a}+\cos \beta t \mathbf{b})) \\
& =\mathbf{x}_{1}(t)-i \mathbf{x}_{2}(t)
\end{aligned}
$$

where

$$
\mathbf{x}_{1}(t)=e^{\alpha t}\left((\cos \beta t \mathbf{a}+\sin \beta t \mathbf{b}) \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\alpha t}((\cos \beta t \mathbf{a}-\sin \beta t \mathbf{b})\right.
$$

Now $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are linear combinations of $\tilde{\mathbf{x}}_{1}(t)$ and $\tilde{\mathbf{x}}_{2}(t)$, and thus are solutions to (1) Note that $\mathbf{x}_{1}(t)$ is the real part of $\tilde{\mathbf{x}}_{1}(t)$ and that $\mathbf{x}_{2}(t)$ is the imaginary part.

Exercise 5. Check that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are linearly independent
Example 6. Find a general solution to (1) for

$$
A=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right)
$$

the characteristic polynomial
$p(r)=\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}3-r & -2 \\ 4 & -1-r\end{array}\right)=(3-r)(-1-r)+8=r^{2}-2 r-3+8=r^{2}-2 r+5=(r-1)^{2}+4$.
Thus, the root of the characteristic equation

$$
r_{ \pm}=1 \pm 2 i
$$

As noted above, we need only find the eigenvector to r_{+},

$$
0=\left(\begin{array}{cc}
3-r_{+} & -2 \\
4 & -1-r_{+}
\end{array}\right) \mathbf{z}=\left(\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right) \mathbf{z}
$$

We have an eigenvector

$$
\mathbf{z}=\binom{1+i}{2}=\binom{1}{2}+i\binom{1}{0}=\mathbf{a}+i \mathbf{b} .
$$

$$
\left.\begin{array}{c}
\mathbf{x}_{1}(t)=e^{t}((\cos 2 t \mathbf{a}+\sin 2 t \mathbf{b}) \\
\mathbf{x}_{1}(t)=\binom{e^{t}(\cos 2 t+\sin 2 t)}{2 e^{t} \cos 2 t} \quad \mathbf{x}_{2}(t)=e^{t}((\cos 2 t \mathbf{a}-\sin 2 t \mathbf{b}) \\
\end{array}\right) . \quad \text { and } \quad \mathbf{x}_{2}(t)=\binom{e^{t}(\cos 2 t-\sin 2 t)}{2 e^{t} \cos 2 t} .
$$

The fundamental solution is

$$
X(t)=\left(\begin{array}{cc}
e^{t}(\cos 2 t+\sin 2 t) & e^{t}(\cos 2 t-\sin 2 t) \\
2 e^{t} \cos 2 t & 2 e^{t} \cos 2 t
\end{array}\right)
$$

Notice that the Wronskian

$$
W\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=e^{t}(\cos 2 t+\sin 2 t) \cdot 2 e^{t} \cos 2 t-e^{t}(\cos 2 t-\sin 2 t) \cdot 2 e^{t} \cos 2 t=4 e^{2 t} \sin 2 t \cos 2 t
$$

