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The object of study in this section is
x′(t) = Ax(t) (1)

where A is a d× d constant matrix whose entries are real numbers.
As before, we will look to the exponential function for solutions.

x(t) = ertu

where u 6= 0 is a d-dimensional column vector and r is a number. Substituting into (1), we find that

rertu = Aertu = ertAu

Therefore,
ru = Au and (A− rI)u = 0

For u 6= 0, we must have non-trivial solutions to this algebraic equation and consequently the determinant

det(A− rI) = 0.

Let’s give names to the concepts that this calculations generate. For a d× d constant matrix A,

• The eigenvalues or characteristic values of A are those (possibly complex) values r for which

(A− rI)u = 0

has at least one non-trivial solution.

• The corresponding solutions u are called the eigenvectors or characteristic vectors of A associated
with r. Note that any non-zero scalar multiple of a eigenvector is an eigenvector.

• The determinant p(r) = det(A − rI) is a polynomial of degree d. p(r) is called the characteristic
polynomial of A and p(r) = 0 is called the characteristic equation of A.

We will see that ehe characteristic equation plays a role for systems similar to the role played by the
auxiliary equation for scalar equations.

Example 1. Let A(t) be the constant matrix

A =

(
1 2
2 1

)
,

the characteristic polynomial

p(r) = det(A− rI) = det

(
1− r 2

2 1− r

)
= (1− r)2 − 4
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The characteristic equation
(1− r)2 − 4 = 0

has solutions
r1 = −1 and r2 = 3

To find eigenvectors, we find non-trivial solutions to(
1− r1 2

2 1− r1

)
u1 = 0 and

(
1− r2 2

2 1− r2

)
u2 = 0,

(
2 2
2 2

)
u1 = 0 and

(
−2 2
2 −2

)
u2 = 0,

Thus, solutions are

u1 =

(
1
−1

)
and u1 =

(
1
1

)
Thus,

x(t) = c1e
tu1 + c2e

3tu2

is a general solution.

Exercise 2. Find a general solution to (1) for

A =

(
2 3
4 3

)
Give the fundamental matrix and determine the solution that satisfies

x(0) = x0 =

(
−1
1

)
We now give an examplw with d = 3.

Example 3. To determine a general solution to (1) for

A =

 0 1 1
1 −2 −3
−1 1 2


we first compute the characteristic polynomial.

p(r) = det(A− rI) = det

 −r 1 1
1 −2− r −3
−1 1 2− r


= −r · det

(
−2− r −3

1 2− r

)
− 1 · det

(
1 −3
−1 2− r

)
+ 1 · det

(
1 −2− r
−1 1

)
= −r ((−2− r)(2− r)− (−3))− 1((2− r)− (−3)(−1)) + (1− (−2− r)(−1))

= −r(−4 + r2 + 3)− (2− r − 3) + (1− 2− r) = −r(r2 − 1) + (r + 1)− (r + 1) = −r(r2 − 1)

= −r(r − 1)(r + 1)
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The characteristic equation p(r) = 0 has roots,

r1 = −1, r2 = 0, and r3 = 1

For the eigenvectors,

(A− r1I) =

 −r1 1 1
1 −2− r1 −3
−1 1 2− r1

 =

 1 1 1
1 −1 −3
−1 1 3


Check that we can take u1 = (1 − 2 1).

For r2 = 0, (A− r2I) = A. Check that we can take u2 = (1 − 1 1) For the eigenvectors,

(A− r3I) =

 −r3 1 1
1 −2− r3 −3
−1 1 2− r3

 =

 −1 1 1
1 −3 −3
−1 1 1


Check that we can take u3 = (0 1 − 1). The general soluiion is

x(t) = e−tu1 + u2 + c3e
−tu3.

1 Complex Eigenvalues

To start with some notation. With z = a+ ib is a complex number, the we write the complex conjugate
z̄ = a− ib.

Exercise 4. • A constant c is real if and only if c̄ = c

• z1 · z2 = z̄1 · z̄2.

A constant a is real is to have ā = a. We extend this notation to vectors and matrices. Thus, a matrix
A has real-valued entries if and only if Ā = A.

Suppose that two solutions to the characteristic equation p(r) = 0 are r± = α± iβ. Thus, r− = r̄+.
If u = a + ib is an eigenvector for A with eigenvalue r+. Here a and b are real-valued vectors. Then,

0 = (A− r+I)(a + ib).

Now take the complex conjugate of this equation, noting that Ā = A and Ī = I.

0 = (A− r+I)(a + ib) = (A− r−I)(a− ib),

showing that a − ib is an eigenvector for A with eigenvalue r−. Thus, we have two linearly independent
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solutions

x̃1(t) = e(α+iβ)t(a + ib)

= eαt(cosβt+ i sinβt)(a + ib)

= eαt((cosβt a− sinβt b) + i(sinβt a + cosβt b))

= x1(t) + ix2(t)

x̃2(t) = e(α−iβ)t(a− ib)

= eαt(cosβt− i sinβt)(a− ib)

= eαt((cosβt a− sinβt b)− i(sinβt a + cosβt b))

= x1(t)− ix2(t)

where
x1(t) = eαt((cosβt a + sinβt b) and x2(t) = eαt((cosβt a− sinβt b).

Now x1(t) and x2(t) are linear combinations of x̃1(t) and x̃2(t), and thus are solutions to (1)
Note that x1(t) is the real part of x̃1(t) and that x2(t) is the imaginary part.

Exercise 5. Check that x1(t) and x2(t) are linearly independent

Example 6. Find a general solution to (1) for

A =

(
3 −2
4 −1

)
the characteristic polynomial

p(r) = det(A−rI) = det

(
3− r −2

4 −1− r

)
= (3−r)(−1−r)+8 = r2−2r−3+8 = r2−2r+5 = (r−1)2+4.

Thus, the root of the characteristic equation

r± = 1± 2i.

As noted above, we need only find the eigenvector to r+,

0 =

(
3− r+ −2

4 −1− r+

)
z =

(
2− 2i −2

4 −2− 2i

)
z

We have an eigenvector

z =

(
1 + i

2

)
=

(
1
2

)
+ i

(
1
0

)
= a + ib.

x1(t) = et((cos 2t a + sin 2t b) and x2(t) = et((cos 2t a− sin 2t b).

x1(t) =

(
et(cos 2t+ sin 2t)

2et cos 2t

)
and x2(t) =

(
et(cos 2t− sin 2t)

2et cos 2t

)
.
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The fundamental solution is

X(t) =

(
et(cos 2t+ sin 2t) et(cos 2t− sin 2t)

2et cos 2t 2et cos 2t

)
Notice that the Wronskian

W (x1,x2) = et(cos 2t+ sin 2t) · 2et cos 2t− et(cos 2t− sin 2t) · 2et cos 2t = 4e2t sin 2t cos 2t.
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