## Appendix A: A Sample R Session

The purpose of this appendix is to become accustumed to the $R$ and the way if responds to line commands. As you progress, you will learn the statistical ideas behind the commands that ask for graphs or computation. Note that $R$ only prints output when it is requested. On a couple of occasions, you will see a plus $(+)$ sign at the beginning of the line. This is supplied by $R$ and you will not type this on your $R$ console.

- Learn how to access help. Type
> help.start()
to access on-line manuals, references, and other material.
- Find fundamental constants

```
> pi
> exp(1)
```

- The $<-$ is used to indicate an assignment. Type

```
> x<-rnorm(50)
> hist(x)
> mean(x)
> sd(x)
> summary(x)
> sort(x)
> sort(x,decreasing=TRUE)
```

The first command gives 50 independent standard normal random variables and stores them as a vector x . It then creates a histogram, computes the mean and standard deviation, and gives a summary of the data. The last two commands give the values of x sorted from bottom to top and then from top to bottom

- To prepare for a scatterplot, enter

```
> (y<-rnorm(x))
```

This gives 50 additional independent standard normal random variables and stores them as a vector y . When the command is placed in parentheses, $R$ prints out the value of the variable.

- To make a scatterplot of these data, type
> plot (x,y)
A graphics window will appear automatically.
- To find the correlation between x and y .

```
>cor(x,y)
```

- To preform a $t$-test, type

```
> t.test (x,y)
> t.test(x,y,alternative="greater")
```

Notice the difference in $p$-value.

- To check to see what is in your workspace, type

```
> ls()
```

- To make a variety of graphs of $\sin (\theta)$

```
> theta<-seq(0, 2*pi,length=100)
> plot(theta,sin(theta))
> par(new=TRUE)
> plot(theta,sin(theta),type="h")
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="s")
> theta<-seq(0,2*pi,length=10)
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="b")
```

To see what these commands mean, type
> help(plot)

- To make some simple arithmetic and repeating sequences, type

```
> c(1:25)
> seq(1,25)
> seq(25,1,-1)
> seq(1,25,2)
> seq(1,25,length=6)
> seq(0,2,0.1)
> rep (0,25)
> rep (1,25)
```

- Make a vector of integers from 1 to 25

```
>n<-c(1:25)
```

- Choose 10 without replacement.

```
> sample(n,10)
```

- Choose 30 with replacement.

```
> samp<-sample(n,30,replace=TRUE)
> samp
```

- Turn this into a $10 \times 3$ matrix.

```
> matrix(samp, ncol=10)
> matrix(samp, nrow=3)
```

Notice that these give the same matrix. The entries are filled by moving down the columns from left to right.

- Turn this into a $3 \times 10$ matrix.

```
> matrix(samp,ncol=3)
```

- Make a segmented bar plot of these numbers.

```
> barplotdata<-matrix(samp,nrow=3)
> barplot(barplotdata)
```

- Perform a chi-squared test..

```
> chisq.test(barplotdata)
```

- Make a column of weight vectors equal to the square root of $n$.

```
> w<-sqrt(n)
```

- Simulate some response variables, and display them in a table.

```
>r<- n + rnorm(n)*W
> data.frame(n,r)
```

- Create a regression line, display the results, create a scatterplot, and draw the regression line on the plot in red.

```
> regress.rn<-lm(r~n)
> summary(regress.rn)
> plot(n,r)
> abline(regress.rn,col="red")
```

Note that the order of $r$ and $n$ for the regression line is reversed from the order in the plot.

- Plot the residuals and put labels on the axes.

```
> plot(fitted(regress.rn), resid(regress.rn),xlab="Fitted values",
+ ylab="Residuals",main="Residuals vs Fitted")
```

- Simulate 100 tosses of a fair coin and view the results

```
>x<-rbinom(100,1,0.5)
> X
```

Next, keep a running total of the number of heads, plot the result with steps (type = "s")

```
> c<-cumsum(x)
> plot(c,type="s")
```

- Roll a fair dice 1000 times and look at a summary

```
> fair<-sample(c(1:6),1000,replace=TRUE)
> summary(fair)
> table(fair)
```

- Roll a biased dice 1000 times and look at a summary

```
> biased<-sample(c(1:6),1000,replace=TRUE,prob=c(1/12,1/12,1/12,1/4,1/4,1/4))
> summary(biased)
> table(biased)
```

- The next data set arise from the famous Michaelson-Morley experiment. To see the data set, type

```
> morley
```

There are five experiments (column Expt) and each has 20 runs (column Run) and Speed is the recorded speed of light minus $290,000 \mathrm{~km} / \mathrm{sec}$.

- The data in the first two columns are labels, type

```
> morley$Expt <- factor(morley$Expt)
```

so that the experiment number will be a factor

- Now make a labeled boxplot of the speed in column 3

```
> boxplot(morley[,3]~morley$Expt,main="Speed of Light Data", xlab="Experiment",
+ ylab="Speed")
```

- Perform an analysis of variance to see if the speed are measured speeds are significantly different between experiments. .

```
> anova.mm<-aov(Speed~Expt,data=morley)
> summary(anova.mm)
```

- Draw a cubic.

```
> x<-seq}(-2,2,0.01
> plot (x, x^3-3*x,type="l")
```

- Draw a bell curve.

```
> curve(dnorm(x),-3,3)
```

- Look at the probability mass function for a binomial distribution.

```
> x<-c(0:100)
> prob<-dbinom(x,100,0.5)
> plot(x,prob,type="h")
```

- To plot a paramterized curve, start with a sequence and give the $x$ and $y$ values.

```
> angle<-seq(-pi,pi,0.01)
> x<-sin(3*angle)
> y<-cos(4*angle)
> plot(x,y,type="l")
```

The type ="l" (the letter ell, not the number one) command connects the values in the sequence with lines.

- Now we will plot contour lines and a surface. First, we give a sequence of values. This time we specify the number of terms.

```
> x <- seq(-pi, pi, len=50)
> y<-x
```

Then, we define a function for these $x$ and $y$ values and draw a contour map.

```
> f <- outer(x, y, function(x, y) (cos(3*x)+\operatorname{cos}(y))/(1+x^2 + y^2))
> contour(x,y,f)
```

- To draw a surface plot,

```
> persp(x,y,f,col="orange")
```

and change the viewing angle

```
> persp(x,y,f,col="orange",theta = -30, phi = 45)
```

