Using Green’s functions with inhomogeneous BCs

Surprise: Although Green’s functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

For self-adjoint L and u, v with homogeneous boundary conditions it follows that

$$\int_{\Omega} (L v) u \, dx - \int_{\Omega} (L u) v \, dx = 0.$$

But if u, v don’t satisfy homogeneous boundary conditions, get

$$\int_{\Omega} (L v) u \, dx - \int_{\Omega} (L u) v \, dx = \text{boundary terms involving } u \text{ and } v.$$

This is called the Green’s formula, which depends on L and Ω.
Surprise: Although Green’s functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!
Surprise: Although Green’s functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

For self adjoint \mathcal{L} and u, v with homogeneous boundary conditions it follows that

$$\int_\Omega (\mathcal{L} v) u \, dx - \int_\Omega (\mathcal{L} u) v \, dx = 0.$$
Surprise: Although Green’s functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

For self-adjoint \mathcal{L} and u, v with homogeneous boundary conditions it follows that

$$
\int_{\Omega} (\mathcal{L} v) u \, d\mathbf{x} - \int_{\Omega} (\mathcal{L} u) v \, d\mathbf{x} = 0.
$$

But if u, v don’t satisfy homogeneous boundary conditions, get

$$
\int_{\Omega} (\mathcal{L} v) u \, d\mathbf{x} - \int_{\Omega} (\mathcal{L} u) v \, d\mathbf{x} = \text{boundary terms involving } u \text{ and } v.
$$

This is called the Green's formula, which depends on \mathcal{L} and Ω.
Using Green’s formula for inhomogeneous boundary conditions

Want to solve

\[\mathcal{L}u(x) = f(x) + \text{inhomogeneous boundary conditions}. \]
Using Green’s formula for inhomogeneous boundary conditions

Want to solve

$$\mathcal{L}u(x) = f(x) + \text{inhomogeneous boundary conditions.}$$

Set \(v(x) = G(x, x_0) \) in Green’s formula

$$\int_{\Omega} (\mathcal{L}G)u \, dx - \int_{\Omega} (\mathcal{L}u)G \, dx = \text{boundary terms.}$$
Using Green’s formula for inhomogeneous boundary conditions

Want to solve

\[\mathcal{L}u(x) = f(x) + \text{inhomogeneous boundary conditions}. \]

Set \(v(x) = G(x, x_0) \) in Green’s formula

\[\int_{\Omega} (\mathcal{L}G)u \, dx - \int_{\Omega} (\mathcal{L}u)G \, dx = \text{boundary terms}. \]

Since \(\mathcal{L}G = \delta(x - x_0) \) and \(\mathcal{L}u = f \), we have

\[\int_{\Omega} \delta(x - x_0)u(x) \, dx - \int_{\Omega} f(x)G(x, x_0) \, dx = \text{boundary terms} \]
Using Green’s formula for inhomogeneous boundary conditions

Want to solve

\[\mathcal{L}u(x) = f(x) \quad + \text{inhomogeneous boundary conditions.} \]

Set \(v(x) = G(x, x_0) \) in Green’s formula

\[
\int_{\Omega} (\mathcal{L} G) u \, dx - \int_{\Omega} (\mathcal{L} u) G \, dx = \text{boundary terms.}
\]

Since \(\mathcal{L} G = \delta(x - x_0) \) and \(\mathcal{L} u = f \), we have

\[
\int_{\Omega} \delta(x - x_0) u(x) \, dx - \int_{\Omega} f(x) G(x, x_0) \, dx = \text{boundary terms}
\]

Collapsing the integral involving the \(\delta \) function,

\[
u(x_0) = \int_{\Omega} G(x, x_0) f(x) \, dx + \text{boundary terms}\]
Green’s formula for Laplacian

Want to solve

$$\Delta u = f \text{ in } \Omega, \quad u = h \text{ on } \partial\Omega,$$

For dimensions ≥ 2, the Green’s formula is just Green’s identity

$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial\Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx.$$
Want to solve
\[\Delta u = f \text{ in } \Omega, \quad u = h \text{ on } \partial \Omega, \]
For dimensions \(\geq 2 \), the Green’s formula is just Green’s identity
\[\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx. \]
Want to solve

$$\Delta u = f \text{ in } \Omega, \quad u = h \text{ on } \partial \Omega,$$

For dimensions ≥ 2, the Green's formula is just Green's identity

$$\int_{\Omega} u\Delta v - v\Delta u \, dx = \int_{\partial \Omega} u\nabla v \cdot \hat{n} - v\nabla u \cdot \hat{n} \, dx.$$

Let G solve $\Delta G = \delta(x - x_0)$ and $G = 0$ on boundary.
Green’s formula for Laplacian

Want to solve

$$\Delta u = f \text{ in } \Omega, \quad u = h \text{ on } \partial \Omega,$$

For dimensions ≥ 2, the Green’s formula is just Green’s identity

$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx.$$

Let G solve $\Delta G = \delta(x - x_0)$ and $G = 0$ on boundary.

Substituting $v(x) = G(x, x_0)$ into Green’s formula,

$$\int_{\Omega} u(x)\delta(x-x_0) - G(x, x_0) f(x) \, dx = \int_{\partial \Omega} u(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) - G(x, x_0) \nabla u(x) \cdot \hat{n}(x) \, dx.$$
Want to solve
\[\Delta u = f \text{ in } \Omega, \quad u = h \text{ on } \partial \Omega, \]

For dimensions \(\geq 2 \), the Green's formula is just Green's identity

\[\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx. \]

Let \(G \) solve \(\Delta G = \delta(x - x_0) \) and \(G = 0 \) on boundary. Substituting \(v(x) = G(x, x_0) \) into Green's formula,

\[\int_{\Omega} u(x) \delta(x-x_0) - G(x, x_0) f(x) \, dx = \int_{\partial \Omega} u(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) - G(x, x_0) \nabla u(x) \cdot \hat{n}(x) \, dx \]

Simplifies to

\[u(x_0) = \int_{\Omega} G(x, x_0) f(x) \, dx + \int_{\partial \Omega} h(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) \, dx, \]
In the case that Ω is a disk of radius a, Green’s function is

$$G(r, \theta; r_0, \theta_0) = \frac{1}{4\pi} \ln \left(\frac{a^2}{r_0^2} \frac{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)}{r^2 + a^4/r_0^2 - 2ra^2/r_0 \cos(\theta - \theta_0)} \right).$$
Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green’s function is

$$G(r, \theta; r_0, \theta_0) = \frac{1}{4\pi} \ln \left(\frac{a^2}{r_0^2} \frac{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)}{r^2 + a^4/r_0^2 - 2ra^2/r_0 \cos(\theta - \theta_0)} \right).$$

The boundary value problem

$$\Delta u = 0, \quad u(a, \theta) = h(\theta)$$

has a solution

$$u(x_0) = \int_{\partial \Omega} h(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) \, dx.$$
Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green’s function is

$$G(r, \theta; r_0, \theta_0) = \frac{1}{4\pi} \ln \left(\frac{a^2}{r_0^2} \frac{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)}{r^2 + a^4/r_0^2 - 2ra^2/r_0 \cos(\theta - \theta_0)} \right).$$

The boundary value problem

$$\Delta u = 0, \quad u(a, \theta) = h(\theta)$$

has a solution

$$u(x_0) = \int_{\partial \Omega} h(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) \, dx.$$

Need normal derivative of G

$$\nabla_x G(x, x_0) \cdot \hat{n}(x) = G_r(r, \theta; r_0, \theta_0)$$

$$= \frac{1}{4\pi} \left(\frac{2r_0 - 2r \cos(\theta - \theta_0)}{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)} - \frac{2r_0r^2 - 2ra^2 \cos(\theta - \theta_0)}{r^2r_0^2 + a^4 - 2rr_0a^2 \cos(\theta - \theta_0)} \right),$$

which at $r = a$ is

$$\frac{a}{2\pi} \left(\frac{1 - (r/a)^2}{r^2 + a^2 - 2ar \cos(\theta - \theta_0)} \right).$$
Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green’s function is

\[
G(r, \theta; r_0, \theta_0) = \frac{1}{4\pi} \ln \left(\frac{a^2}{r_0^2} \frac{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)}{r^2 + a^4/r_0^2 - 2ra^2/r_0 \cos(\theta - \theta_0)} \right).
\]

The boundary value problem

\[
\Delta u = 0, \quad u(a, \theta) = h(\theta)
\]

has a solution

\[
u(x_0) = \int_{\partial \Omega} h(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) \, dx.
\]

Need normal derivative of \(G \)

\[
\nabla_x G(x, x_0) \cdot \hat{n}(x) = G_r(r, \theta; r_0, \theta_0)
\]

\[
= \frac{1}{4\pi} \left(\frac{2r_0 - 2r \cos(\theta - \theta_0)}{r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)} - \frac{2r_0 r^2 - 2ra^2 \cos(\theta - \theta_0)}{r^2 r_0^2 + a^4 - 2rr_0 a^2 \cos(\theta - \theta_0)} \right),
\]

which at \(r = a \) is

\[
a \left(\frac{1 - (r/a)^2}{r^2 + a^2 - 2ar \cos(\theta - \theta_0)} \right).
\]

Parameterize boundary integral using θ and \(|dx| = a \, d\theta\),

\[
u(r_0, \theta_0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(a^2 - r_0^2)h(\theta)}{a^2 + r_0^2 - 2ar_0 \cos(\theta - \theta_0)} \, d\theta.
\]
Neumann boundary conditions

Want to solve

\[\nabla^2 u = 0, \quad \lim_{z \to \infty} u(x, y, z) = 0, \quad u_z(x, y, 0) = h(x, y), \]

in upper half space \(\{(x, y, z)|z > 0\} \).
Neumann boundary conditions

Want to solve

\[\Delta u = 0, \quad \lim_{z \to \infty} u(x, y, z) = 0, \quad u_z(x, y, 0) = h(x, y), \]

in upper half space \(\{(x, y, z) | z > 0\} \).

Green’s formula

\[\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx. \]

has both Dirichlet and Neumann boundary terms in \(u \), but only know \(\nabla u(x, y, 0) \cdot \hat{n} = -u_z(x, y, 0) \).
Want to solve

$$\Delta u = 0, \quad \lim_{z \to \infty} u(x, y, z) = 0, \quad u_z(x, y, 0) = h(x, y),$$

in upper half space \{ (x, y, z) | z > 0 \}.

Green’s formula

$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \nabla v \cdot \hat{n} - v \nabla u \cdot \hat{n} \, dx.$$

has both Dirichlet and Neumann boundary terms in \(u \), but only know

$$\nabla u(x, y, 0) \cdot \hat{n} = -u_z(x, y, 0).$$

To make \(\nabla v \cdot \hat{n} = \nabla G \cdot \hat{n} \) vanish on boundary, need Green’s function to respect “boundary condition principle”:

The Green’s function must have the same type of boundary conditions as the problem to be solved, and they must be homogeneous.
Neumann boundary conditions, cont.

Method of images prescribes *even* reflection so $G_z = 0$ when $z = 0$:

$$G(x, y, z; x_0, y_0, z_0) = G_3(x, y, z; x_0, y_0, z_0) + G_3(x, y, z; x_0, y_0, -z_0)$$

$$= \frac{1}{4\pi} \left(\frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} + \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z+z_0)^2}} \right)$$
Method of images prescribes *even* reflection so \(G_z = 0 \) when \(z = 0 \):

\[
G(x, y, z; x_0, y_0, z_0) = G_3(x, y, z; x_0, y_0, z_0) + G_3(x, y, z; x_0, y_0, -z_0)
\]

\[
= \frac{1}{4\pi} \left(\frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} + \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2}} \right)
\]

Substituting \(v(x) = G(x, x_0) \) into Green's formula and collapsing the \(\delta \)-function integral,

\[
u(x_0) = -\int_{\partial \Omega} G(x; x_0) \nabla u(x) \cdot \hat{n}(x) \, dx,
\]
Neumann boundary conditions, cont.

Method of images prescribes even reflection so $G_z = 0$ when $z = 0$:

$$G(x, y, z; x_0, y_0, z_0) = G_3(x, y, z; x_0, y_0, z_0) + G_3(x, y, z; x_0, y_0, -z_0)$$

$$= \frac{1}{4\pi} \left(\frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} + \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z+z_0)^2}} \right)$$

Substituting $v(x) = G(x, x_0)$ into Green’s formula and collapsing the δ-function integral,

$$u(x_0) = -\int_{\partial \Omega} G(x; x_0) \nabla u(x) \cdot \hat{n}(x) \, dx,$$

Boundary $\partial \Omega$ is both xy-plane and the effective boundary at infinity, but integrand vanishes on the latter.
Method of images prescribes *even* reflection so \(G_z = 0 \) when \(z = 0 \):

\[
G(x, y, z; x_0, y_0, z_0) = G_3(x, y, z; x_0, y_0, z_0) + G_3(x, y, z; x_0, y_0, -z_0)
\]

\[
= \frac{1}{4\pi} \left(\frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} + \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z+z_0)^2}} \right)
\]

Substituting \(\nu(x) = G(x, x_0) \) into Green’s formula and collapsing the \(\delta \)-function integral,

\[
u(x_0) = -\int_{\partial \Omega} G(x; x_0) \nabla u(x) \cdot \hat{n}(x) \, dx,
\]

Boundary \(\partial \Omega \) is both \(xy \)-plane and the effective boundary at infinity, but integrand vanishes on the latter.

Since \(\hat{n} \) is directed *outward*, \(\nabla u(x) \cdot \hat{n}(x) = -u_z(x, y, 0) \), and

\[
u(x_0, y_0, z_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{h(x, y)}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + z_0^2}} \, dx \, dy.
\]
If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$G(x, x_0) = G(x_0, x), \quad \text{"Reciprocity"}$$
If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$G(x, x_0) = G(x_0, x), \quad \text{“Reciprocity”}$$

Proof: Insert $v(x) = G(x, x_1)$, $u(x) = G(x, x_2)$, $\mathcal{L}v = \delta(x - x_1)$ and $\mathcal{L}u = \delta(x - x_2)$ into Green’s formula:

$$\int_{\Omega} \delta(x - x_1) G(x, x_2) dx - \int_{\Omega} G(x, x_1) \delta(x - x_2) dx = 0$$

which simplifies to $G(x_1, x_2) - G(x_2, x_1) = 0$.
Symmetry (reciprocity) of the Green’s function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$G(x, x_0) = G(x_0, x), \quad \text{“Reciprocity”}$$

Proof: Insert $v(x) = G(x, x_1)$, $u(x) = G(x, x_2)$, $\mathcal{L}v = \delta(x - x_1)$ and $\mathcal{L}u = \delta(x - x_2)$ into Green’s formula:

$$\int_{\Omega} \delta(x - x_1) G(x, x_2) dx - \int_{\Omega} G(x, x_1) \delta(x - x_2) dx = 0$$

which simplifies to $G(x_1, x_2) - G(x_2, x_1) = 0$.

Also: can interchange arguments of partial derivatives, e.g.

$$\partial_x G(x, x_0) = \lim_{h \to 0} \frac{G(x + h, x_0) - G(x, x_0)}{h}$$

$$= \lim_{h \to 0} \frac{G(x_0, x + h) - G(x_0, x)}{h}$$

$$= \partial_{x_0} G(x_0, x).$$
Symmetry (reciprocity) of the Green’s function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$G(x, x_0) = G(x_0, x), \quad \text{“Reciprocity”}$$

Proof: Insert $v(x) = G(x, x_1)$, $u(x) = G(x, x_2)$, $\mathcal{L}v = \delta(x - x_1)$ and $\mathcal{L}u = \delta(x - x_2)$ into Green’s formula:

$$\int_{\Omega} \delta(x - x_1) G(x, x_2) dx - \int_{\Omega} G(x, x_1) \delta(x - x_2) dx = 0$$

which simplifies to $G(x_1, x_2) - G(x_2, x_1) = 0$.

Also: can interchange arguments of partial derivatives, e.g.

$$\partial_x G(x, x_0) = \lim_{h \to 0} \left(\frac{G(x + h, x_0) - G(x, x_0)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{G(x_0, x + h) - G(x_0, x)}{h} \right)$$

$$= \partial_{x_0} G(x_0, x).$$

For example, representation formula

$$u(x_0) = \int_{\Omega} G(x, x_0) f(x) dx + \int_{\partial\Omega} h(x) \nabla_x G(x, x_0) \cdot \hat{n}(x) \, dx,$$

can be rewritten by exchanging the notation for x and x_0 and using reciprocity,

$$u(x) = \int_{\Omega} G(x, x_0) f(x_0) dx_0 + \int_{\partial\Omega} h(x_0) \nabla_{x_0} G(x, x_0) \cdot \hat{n}(x_0) \, dx_0.$$