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Abstract

A phase field model for the solidification of binary alloys is presented and analyzed. A matched asymptotic approach
is used to recover the model’s leading order sharp interface motion. Equations for both the solute profile and free energy
balance at the interface are derived, demonstrating solute trapping at large growth velocities and leading to a construction
of the non-equilibrium phase diagram over a large range of growth conditions. A rigorous understanding of the interfacial
conditions is provided, and comparisons are made to existing theories. © 2001 Published by Elsevier Science B.V.

PACS: 68.10.Jy; 82.65.Dp; 64.70.Dv
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1. Introduction

As a liquid melt composed of two (or more) atomic species solidifies, the resulting solid typically has composition
unequal to that of the liquid. This composition depends in part on the local conditions under which growth occurred,
in particular on the rapidity of solidification. As a result, the growth conditions largely determine the resulting solid
microstructure and its material properties. The goal of this paper is to present a theory which predicts binary alloy
composition under non-equilibrium growth conditions.

Sharp interface models for alloy growth rely on two basic elements: a conservation law for mass redistribution,
and assumptions about how composition at the interface varies with growth conditions. The continuous growth (CG)
model of Aziz and Kaplan [3] is one such approach which specifies material flux and phase change reaction rates at
the interface. This theory predicts that the jump in composition between solid and liquid will vanish as the interface
velocity becomes large, a phenomenon known as solute trapping. There is considerable experimental evidence for
this effect [16,20].

Phase field models offer another approach to understanding phase transition processes, especially under non-
equilibrium conditions. Such models have been used extensively to describe solidification of pure materials
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[9,18,19,23]. For alloy problems, studies with diffuse phase boundaries date back to the work of Baker and Cahn [4].
Complete phase field models for binary alloys have been developed by Wheeler et al. [25], Caginalp and Xie [7], and
Bi and Sekerka [5]. These models have been used in numerical simulation of pattern formation and microstructure
evolution [10,11,24]. Alloy models for systems with more than one solid phase have also been developed [12,22,27].

Solute trapping has been predicted in phase field models as a natural consequence of the model’s construction.
There have been two distinct ways in which this effect has been recovered. The first is to incorporate in the model
a description of energy due to large gradients of composition. This approach was first suggested by Wheeler et al.
[26], and an asymptotic analysis was undertaken by Charach and Fife [8].

Recently, solute trapping has been reported in models without the addition of solute gradient energy by Ahmad
et al. [1] and Kim et al. [17]. Rather than recovering the sharp interface laws as an asymptotic limit of small interface
width, their idea is to regard the interface width as finite, and consider instead the limit of large growth velocity. They
study one-dimensional solutions and conclude that solute trapping occurs as the mass diffusion length approaches
the scale of the diffuse interface thickness.

This paper is similar to the latter studies by not including solute gradient energy. The main result here is that sharp
interface laws exhibiting solute trapping can be recovered from the model by asymptotic analysis. In doing this, it
is necessary to carefully determine the proper scales of the terms appearing in the equations. In the intermediate
velocity regime, the assumed scaling maintains a constant ratio of diffusion to interface length scales, so that the
sharp interface limit captures the correct interaction between fields.

The main ideas are as follows:

• A model is constructed from a free energy functional, making only a few restrictive assumptions about the
constitutive functions which appear.

• A careful asymptotic analysis is conducted, giving a set of necessary conditions which the model’s leading order
behavior must satisfy.

• The segregation of solute is predicted by a degenerate boundary value problem. A rigorous analysis of this
problem is presented, demonstrating solute trapping effects at high velocity.

• The non-equilibrium phase diagram is given by solvability criteria from the asymptotic analysis in conjunction
with the solute segregation equation.

The paper begins with a description of the phase field model, proceeds to analyze the leading order behavior for
small interface width, and concludes with computational examples which are compared with other studies.

2. Phase field model

The system we are concerned with is an ideal mixture of two species A and B. The model will involve the
functions φ(x, t) and c(x, t), designating the phase of the system and fractional concentration of species B (molar
volumes of A and B are presumed to be identical). We will take φ = 1 to be solid and φ = −1 to be liquid. The
temperature T of the system will be a specified constant parameter, although it is not hard to incorporate thermal
effects as well [5,7].

We start with an assumed form of the total Helmholtz free energy:

F(φ, c, T ) =
∫
g(φ)

a
+ b

2
|∇φ|2 + f (φ, c, T ) dx, (2.1)

which is the sum of the bulk free energy density f (φ, c, T ) and terms representing the interface free energy.
The function g(φ) is a non-dimensional potential, assumed to be positive and possessing wells at ±1 so that
g(±1) = 0.
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Dynamic models may be derived from (2.1) as gradient flows (for example, see [5]), or as balances of interfacial
stresses [13,14]. Our model will be a generalization of the isothermal alloy models appearing in [1,17,25], taking
the form

φt = −Mφ(φ, c)δF
δφ
, (2.2)

ct = ∇ ·
(
M(φ, c)∇ δF

δc

)
, (2.3)

whereMφ,M > 0 are solute and phase mobilities, respectively. For simplicity,Mφ will be taken to be a constant,
andM will depend only on the phase φ.

It will be convenient for what follows to write the solute mobility as

M(φ) = MLMS

q(φ)ML + (1 − q(φ))MS
, (2.4)

where ML,MS are values of mobility in the liquid and solid, respectively, and q(φ) is a monotone increasing
function with q(1) = 1, q(−1) = 0. Note that this maintains generality by allowing q(φ) to be otherwise arbitrary.

2.1. Equilibrium interface and constitutive functions

The parameters a and b can be related to the diffuse interface width and surface energy as in Ref. [7]. Ignoring the
bulk free energy component in (2.1) for a moment, the equilibrium interface profile will solve the Euler–Lagrange
equation

bφxx − 1

a
g′(φ) = 0, (2.5)

which may be integrated to give a decreasing interface profile given implicitly by

φx(x) = −
√

2g(φ(x))

ab
. (2.6)

This motivates the definition for the interface width

ε =
√

ab. (2.7)

The free energy of the equilibrium interface, which is just the surface energy density, is then

σ =
√
b

a

∫ 1

−1

√
2g(φ) dφ. (2.8)

Without loss of generality, we will assume that
∫ 1
−1

√
2g(φ) = 1; the parameters are therefore related by

a = ε

σ
, b = εσ. (2.9)

The bulk free energy density f (φ, c, T ) will be endowed with several standard properties, but will otherwise be
considered arbitrary for most of this paper. The interdiffusion potential (the difference of chemical potentials of the
two species) is

µ(φ, c, T ) = fc(φ, c, T ). (2.10)
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Fig. 1. Typical solid (solid line) and liquid (dashed line) free energy curves at fixed temperature. As the temperature decreases, the liquid curve
tends upwards relative to the solid curve.

Without loss of generality, we assume species A has a greater melting temperature than species B. In light of this,
we suppose that

∂µ

∂φ
= ∂

∂c

∂f

∂φ
> 0. (2.11)

Additionally, the free energy is convex in c, giving

∂µ

∂c
> 0. (2.12)

We may alternatively regard c as a function of µ and φ, writing c(φ, µ, T ). By the usual relations

∂µ

∂c

∂c

∂µ
= 1,

∂µ

∂c

∂c

∂φ

∂φ

∂µ
= −1 (2.13)

we obtain from (2.11) and (2.12)

∂c

∂φ
< 0,

∂c

∂µ
> 0. (2.14)

An example of the free energy function is shown in Fig. 1.
To avoid more notation, we will also use c, µ to denote the values of these quantities, rather than the functional

relationships among them. The context will remove any ambiguity which results.

2.2. Dimensionless version

Let X, T ,L be characteristic values of length, time and energy scale (the latent heat, for example), respectively.
It will also be important to talk about the characteristic velocity V = X/T . Rescale in time and space by setting

x′ = x

X
, t ′ = t

T
(2.15)

and define the dimensionless quantities

ε′ = ε

X
, α = X4

MφLTε
, σ ′ = σX2

L
, f ′ = fX3

L
, M ′(φ) = M(φ)T

X2
. (2.16)
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We will mostly be interested in the case where mobility in the liquid is much larger than in the solid, so we define
the ratio

λ = ML

MS
. (2.17)

Now setM ′
L = MLT/X

2 and write

M ′
S = MST

X2
=
(
ML

λεV

)
ε′ ≡ ρε′. (2.18)

Our principal interest is when ρ an O(1) quantity, which assumes a range of growth velocities which have the
characteristic scale

VT = ML

λε
. (2.19)

We shall, however, also consider other scales for ρ in Section 6.
The equations are (dropping the prime notation)

αε2

σ
φt = ε2�φ − g′(φ)− ε

σ
fφ(φ, c, T ), (2.20)

ct = ∇ · (M(φ)∇µ) (2.21)

with

M(φ) = MLρε

q(φ)ML + (1 − q(φ))ρε . (2.22)

Note that, provided q(φ)
 ε, the mobility will beO(ε). This is a very important aspect of the following asymptotic
analysis.

3. Sharp interface limit

To derive the leading order motion of the model, matched asymptotic expansions will be used. It will be assumed
that the liquid region ΩL(t; ε) = {φ < 0} and the solid region ΩS(t; ε) = {φ > 0} are separated by a smooth
evolving interface Γ (t; ε) which has a smooth, finite limit as ε → 0. There is some local, orthogonal coordinate
system (r, s) for which r(xxx, t; ε) is the signed distance to Γ (t; ε) with r positive in the liquid region, and s(xxx, t; ε)
is chosen so that it parameterizes the interface when r = 0.

Well away from the interface (when |r| is large in comparison with ε), the functions φ, c, µwill denote an “outer
solution”. Each will be expanded in a regular series of powers of ε.

We will suppose there is a layer at near the interface which defines an “inner” region, and there we will use the
rescaled normal coordinate

z = r

ε
. (3.1)

We will use the notation Φ = φ(z, s, t), C = c(z, s, t) andM = µ(z, s, t) for the inner region solutions, and each
of these will also have a regular expansion in powers of ε.

Written in the (z, s, t) coordinates, the equations are

ε2 α

σ
(Φt + stΦs)+ ε α

σ
rtΦz = Φzz − g′(Φ)+ ε

[
�rΦz − 1

σ
fφ(Φ,C, T )

]
+ ε2[�sΦs + |∇s|2Φss], (3.2)
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ε2(Ct + stCs)+ εrtCz = (M(φ)Mz)z + ε�rM(φ)Mr + ε2[M(φ)�sMs + |∇s|2(M(φ)Ms)s]. (3.3)

The interface velocity V and curvature κ also need to be expanded in powers of ε. We will, however, only be
concerned with their leading order terms, which are related to the moving, curvilinear coordinates by the expressions

κ0 = �r, V0 = −rt . (3.4)

It is implicit in the way that the characteristic scales were chosen that V0 is an O(1) quantity.

3.1. Matching and auxiliary conditions

Where each region overlaps the other, different expansions must describe the same function (a detailed explanation
is provided by Caginalp and Fife [6]). Suppose u(r, s, t) is some outer solution defined for r > 0 and U(z, s, t)
some inner region solution. By a Taylor expansion

u(r, s, t) = u0(εz, s, t)+ δu1(εz, s, t)+ · · · = u0(0+, s, t)+ δ[u1(0+, s, t)+ u′
0(0+, s, t)z] + · · · , (3.5)

where primes denote derivatives with respect to r and 0+ denotes limits from the right. By taking δ → 0 while
simultaneously taking z large we obtain

lim
z→±∞U0(z, s, t) = u0(0±, s, t) (3.6)

and

U1(z, s, t) ∼ u′
0(0+, s, t)z+ u1(0+, s, t)+ o(1), z→ ±∞. (3.7)

There is special matching condition which we shall draw attention to. Anticipating that φ is not close to −1 in
the inner region, the normal component of flux Jn = M(φ)µr therefore has the expansion

Jn = ρ

q(Φ)

∂M0

∂z
(z, s, t)+O(ε). (3.8)

In the outer region, we anticipate φ will be −1 up to transcendentally small corrections, so that the flux may also
be written as

Jn = ML
∂µ0

∂r
(r, s, t)+O(ε). (3.9)

Matching the expansions in (3.8) and (3.9) as before gives

lim
z→∞

ρ

q(Φ0)

∂M0(z, s, t)

∂z
= ML

∂µ0(0+, s, t)
∂r

. (3.10)

As a final note, by the definition of Γ , Φ must satisfy Φ(0, s, t) = 0 at each order of the expansion, giving the
series of conditions

Φ0(0, s, t) = 0, Φ1(0, s, t) = 0, etc. (3.11)

3.2. Leading order solutions

In the outer region, φ solves g′(φ0) = 0, which means φ0 = ±1, corresponding to each bulk phase. In the liquid
region ΩL, the leading order concentration will solve a diffusion equation

(c0)t = ML�µ0(−1, c0) (3.12)
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and in the solid region ΩS, c0 is simply constant in time:

(c0)t = 0. (3.13)

In the inner region, the phase profile solves

(Φ0)zz − g′(Φ0) = 0 (3.14)

with boundary conditions Φ(−∞) = 1 and Φ(∞) = −1. This equation is like Eq. (2.5), and has a unique
monotonically decreasing solution satisfying Φ0(0) = 0. For example, if g(φ) = 1

2 (1 − φ2)2 then Φ0(z) =
− tanh(z).

In expanding Eq. (3.3), the mobility must be expanded in ε to give

M(φ) = ε ρ

q(φ)
+O(ε2). (3.15)

For this reason, the leading order solute profile will depend on the velocity:

−V0(C0)z =
(

ρ

q(Φ0)
(M0)z

)
z

. (3.16)

After integrating once, the constant of integration can be found by taking the limit z→ −∞ and using an outer–inner
matching condition. We obtain

V0(cS − C0) = ρ

q(Φ0)
(M0)z, (3.17)

where cS ≡ c(0−, s, t), the solute concentration just on the liquid side of the interface. Eq. (3.17) governs the
segregation of solute across the interface; it will be discussed extensively in the next section. For now, we assume
that it has a unique solution.

Taking the limit z→ ∞ and using the flux matching condition (3.10) gives the solvability condition

V0(cL − cS) = −ML
∂µ0

∂n

∣∣∣∣
ΓL

, (3.18)

where ΓL refers to evaluation on the liquid side of the interface. This is the Stefan-type condition for conservation
of mass across a moving discontinuity.

3.3. Solutions at order O(ε)

At next order, the inner φ equation reads

LΦ2 =
(
κ0 + α

σ
V0

)
(Φ1)z − 1

σ
fφ(Φ0, C0, T ), (3.19)

where the self-adjoint operator L = d2/dz2 − g′′(Φ0). Multiplying by (Φ0)z and integrating, we obtain as a
solvability condition

(σκ0+αV0)

∫ ∞

−∞
(Φ0)

2
z dz =

∫ ∞

−∞
fφ(Φ0, C0, T )(Φ0)z dz = [f (Φ0, C0, T )]

∞
−∞−

∫ ∞

−∞
M0(C0)z dz. (3.20)

Using integrating by parts,∫ ∞

−∞
(C0)zM0 dz = µL(cL − cS)+ ρ

V0

∫ ∞

−∞
(µ0)

2
z

q(φ)
dz ≡ µL(cL − cS)+ J. (3.21)
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Since
∫∞
−∞(Φ0)

2
z dz = 1, Eq. (3.20) may be written as

{f (−1, cL, T )− f (1, cS, T )− µL(cL − cS)− σκ0} − J = αV0. (3.22)

A discussion of this will be carried out in Section 5.

3.4. Free boundary problem

The previous analysis yields a free boundary problem for the evolution of the phase interface. Let V, κ denote
the normal interface velocity and curvature and let cL be the limit of c(x, t) at the interface from the liquid side.
The equations which dictate the flow of material are

ct = ML�µ(c), x ∈ ΩL, (3.23)

V (cL − cS) = −ML
∂µ

∂n

∣∣∣∣
ΓL

. (3.24)

Eq. (3.17) will give a condition relating the interface velocity to the local compositions, which takes the form

cS = h1(cL, V ). (3.25)

The free energy balance (3.22) will impose another constraint of the form

h2(cL, cS, T , V , κ) = 0. (3.26)

The interface concentrations can be found as functions of local conditions by solving (3.25) and (3.26) simultane-
ously.

It may be that (3.23)–(3.26) does not always posses a solution; indeed, we will see that there are growth conditions
for which we can find no solution at all for the interface composition. This is just a reflection of the fact that the
analysis made certain assumptions about the sizes of the quantities involved. When those assumptions are violated,
we must replace the above free boundary problem with a different one. This is discussed further in Section 6.

4. Solute segregation

Properties of segregation equation (3.17) will now be discussed in the theorem which follows. In short, the
theorem states that the difference between liquid and solid solute concentrations decreases monotonically as the
interface velocity increases. Furthermore, complete solute trapping, where the liquid and solid concentrations are
equal, occurs in the limit of large velocity.

To simplify notation, set µ =M0, φ = Φ0, c = C0, and v = V0/ρ so that (3.17) may be rewritten as

µz = vq(φ)[cS − c(φ, µ)] (4.1)

which has the boundary condition

lim
z→−∞µ(z) = µS = µ(1, cS). (4.2)

Eq. (3.14) may be integrated to obtain

φz = −
√

2g(φ), (4.3)
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Fig. 2. A qualitative picture of the inner solution profiles for φ,µ and c. As v increases, the solute profile becomes flatter, and its asymptotic
limits approach a common value.

whose solution is made unique by specifying

φ(0) = 0, (4.4a)

lim
z→±∞φ(z) = ∓1. (4.4b)

Eqs. (4.1)–(4.4) will uniquely determine a solution for c(z) for a given value of the solid solute concentration cS.
For a given value of v, define

µL(v) = lim
z→∞µ(z), cL(v) = c(−1, µL) (4.5)

to be the liquid values of µ and c. When the velocity is small, µ(z) will be approximately constant, and the liquid
concentration will approach the value

c∗L = c(−1, µ(1, cS)). (4.6)

A schematic representation of the profiles for φ,µ and c and their relationship to the outer solution values is
shown in Fig. 2. The solutions to (4.1)–(4.4) are all qualitatively similar to this picture, and their properties will be
verified rigorously.

The theorem relies on two technical assumptions, that there exist positive constants C1, C2 so that

q(φ)√
g(φ)

> C1 > 0 (4.7)

and

lim
φ→1

g′(φ)√
g(φ)

= −C2 < 0. (4.8)

Properties of segregation equation are now summarized.
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Theorem 1. The problem (4.1)–(4.4) has a unique solution satisfying the following:

1. µ(z) monotonically decreases in z,
2. c∗L ≥ cL(v) ≥ cS,
3. c(z) is increasing as a function of cS,
4. cL(v) is decreasing as a function of v,
5. The solute profile has the bound

c(z)− cS ≤ constant

v
. (4.9)

6. As v → ∞, cL → cS.

Proof. Linearizing Eqs. (4.1) and (4.3) about the equilibrium (φ, µ) = (1, µS) gives the system(
φ − 1
µ− µS

)
z

=
(

C2 0
−vcφ(1, µS) −vcµ(1, µS)

)(
φ − 1
µ− µS

)
, (4.10)

where C2 is defined in (4.8). Since ∂c/∂µ > 0, this equilibrium is hyperbolic, and has a one-dimensional unstable
manifold U tangent to the line

µ− µS = −cφ(1, µS)

cµ(1, µS)+ C2v−1
(φ − 1) (4.11)

in the (φ, µ) plane. Pick any point on U , (φ∗, u∗) with φ∗ < 1. The forward and backward solutions to the
initial value problem (4.1) and (4.3) with initial data (φ(0), u(0)) = (φ∗, u∗) will give a solution satisfying (4.2).
Condition (4.4a) can be satisfied by an appropriate translation of this solution. Uniqueness follows from the fact
that any solution satisfying (4.2), (4.4b) must intersect U .

Proof of (a): Let π(z) = µz. By differentiating (4.1), it is seen that π solves

πz +Q(z)π = −vq(φ)

(
∂c

∂φ

)
φz < 0, (4.12)

where

Q(z) = vq(φ)
∂c

∂µ
− q(φ)z

q(φ)
> 0. (4.13)

Define the positive integrating factorK(z) = exp(
∫ z

0Q(z
′) dz′). Multiplying byK and integrating (4.12) from −∞

to z gives

π(z)K(z) < 0. (4.14)

Proof of (b): Using part (a) and Eq. (4.1), dµ/dz > 0 implies c(z) > cS for all z. The other inequality is verified
by observing that

cL = c(−1, µL) < c(−1, µS) = c∗L. (4.15)

Proof of (c): Let c1(z), c2(z) be solutions (given implicitly via µ) for the values cS = c1
S, c

2
S, respectively, and

suppose

c1
S < c

2
S. (4.16)

In general the function c(φ(z), µ(z)) will solve the equation

cz = ∂c

∂µ
µz + ∂c

∂φ
φz, (4.17)
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which, using (4.1) takes the form

cz = cSu(c, z)+ w(c, z), (4.18)

where u(c, z) > 0. As z → −∞, it must be that c1(z) < c2(z). Now assume there is some minimal z∗ for which
c1(z

∗) = c2(z∗). Then

(c1)z(z
∗) = c1

Su(c1(z
∗), z∗)+ w(c1(z∗), z∗) < c2

Su(c2(z
∗), z∗)+ w(c2(z∗), z∗) = (c2)z(z∗), (4.19)

which is impossible since c1(z) must have approached c2(z) from below.
Proof of (d): Let v1 < v2, but suppose

cL(v1) < cL(v2). (4.20)

We may regard φ as the independent variable, and µ(φ) solves

dµ

dφ
= vq(φ)√

2g(φ)
[c(φ, µ)− cS]. (4.21)

Consider solutions µ1,2 to (4.21) with v = v1,2 and initial data µ1,2(−1) = µ(−1, cL(v1,2)). We claim that
µ1(φ) < µ2(φ) for all φ ∈ (−1, 1). Using ∂µ/∂c > 0 and assumption (4.20), this must be the case at φ = −1.
Suppose that there is some minimal φ∗ at which µ1 = µ2. At this point,

dµ1

dφ
= v1q(φ

∗)√
2g(φ∗)

[c(φ∗, µ1(φ
∗))− cS] <

v2q(φ
∗)√

2g(φ∗)
[c(φ∗, µ2(φ

∗))− cS] = dµ2

dφ
. (4.22)

But this is impossible since µ1 approaches µ2 from below, establishing the claim.
Notice by the form of the linear unstable manifold (4.11), that near φ = +1, we must have µ1 > µ2. This

contradicts the claim and proves (c).
Proof of (e): First we show a lower bound on µ(z). Since c(φ, µ) > cS,

µ(φ, c) = µ(φ, c(φ, µ)) > inf
φ∈[−1,1]

µ(φ, cS). (4.23)

Since µ also has an upper bound of µS, it follows that µ, c and their partial derivatives are bounded independently
of v.

Set C(z) = c(z)− cs , which solves

Cz + vQ(z)C = P(z), (4.24)

whereQ(z) = q(φ)(∂c/∂µ) and P(z) = (∂c/∂φ)φz. Introducing the integration factor

K(z) = exp

(
v

∫ z

0
Q(z′) dz′

)
(4.25)

and noting that limz→−∞K(z) = 0, we may integrate (4.24) to obtain

C(z) =
∫ z

−∞
R(z, z′)P (z′) dz′ = 1

v

∫ z

−∞
∂R

∂z′
(z, z′)

P (z′)
Q(z′)

dz′, (4.26)

where

R(z, z′) = exp

[
v

(∫ z′

0
Q(z′′) dz′′ −

∫ z

0
Q(z′′) dz′′

)]
. (4.27)
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Then observe that

P(z)

Q(z)
= (∂c/∂φ)φz

(∂c/∂µ)q(φ)
(4.28)

is bounded independently of v because of (4.7) and the fact that ∂c/∂µ is uniformly bounded away from zero. We
have the estimate

C(z) ≤ constant

v

∫ z

−∞
∂R

∂z′
(z, z′) dz′ = constant

v
. (4.29)

Proof of (f): This follows readily from (e). �

5. The non-equilibrium phase diagram

One of our aims is to predict the local segregation of solute at the interface given the local temperature, interface
velocity and curvature. In doing so it will be necessary to solve the segregation equation (3.17) and the interface
condition (3.22) simultaneously.

We first discuss the meaning of (3.22). The term in brackets is the change in free energy upon solidification of
a curved interface. The integral J may be identified with an effect known as solute drag, which has appeared in
many theories of rapid alloy solidification [1,4,15,17]. This is the component of free energy change which drives
solute redistribution instead of solidification. The difference of these terms is the free energy which is used to drive
the solidification process, which in our case is exactly proportional to the interface velocity, due to our choice of a
constant inverse phase mobility α.

We first consider limiting cases for growth velocity to obtain a better understanding of the interface conditions.

5.1. Slow interfaces

Formally settingV0 = κ0 = 0, we obtain from Eq. (3.17) thatM0 is a constant. Therefore relation (3.22) reduces to

f (−1, cL, T )− f (1, cS, T ) =M0(cL − cS). (5.1)

For given temperature T , the relations

∂f

∂c
(1, cL, T ) =M0 = ∂f

∂c
(1, cS, T ) (5.2)

together with Eq. (5.1) uniquely determine cL, cS andM0. This is simply the usual common tangent construction
for equilibrium solute partitioning.

5.2. Fast interfaces

We obtain from the estimate (4.9) that

(cL − cS)µL + J < (constant)V −1
0 . (5.3)

Then for large velocities, the conditions for a flat interface are asymptotically

f (−1, cL, T ) = f (1, cS, T )+ αV0, (5.4)

cL = cS. (5.5)
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ProvidedαV0 is negligible, then condition (5.4) simply says that the interface solute concentration lies on the T0-line,
where solid and liquid free energies are the same. On the other hand, as the velocity increases and the αV0 term
becomes appreciable, the interface temperature must fall significantly so as to enlarge the separation between the
solid and liquid free energies (see Fig. 1). This crossover of behavior was reported by Aziz and Boettinger [2] for
the continuous growth model as well.

5.3. Existence of solutions

It may be that (3.17) and (3.22) admit no solutions for some configurations:

• If T is outside the “two phase” region, which is that between the melting temperatures of the two species, then
the graph of f (−1, c, T )will lie entirely above or below the graph of f (1, c, T ). For example, if the temperature
is less than both melting temperatures, then solid is always thermodynamically preferred, i.e.

f (1, c, T ) < f (−1, c, T ) (5.6)

for all c. In this case both the common tangent and the T0-line solution do not exist.
• If the velocity is particularly large, then it may be that no solution to (5.4) exists simply because the graphs of

both sides do not intersect. If the interface curvature is rather large, a similar situation may occur.

It should be noted that the above considerations do not represent a breakdown in the model, but rather a failure of
the asymptotics to capture the true behavior at the interface. In the next section, we amend the asymptotic analysis
to include alternative scales which will lead to solvable interface conditions.

As a way of understanding the interface conditions, imagine that cS is given. Let c(z; cS) be the corresponding
solute profile given by solving (4.1)–(4.4). Define the function

E(cS) =
∫ ∞

−∞
fφ(Φ0, c(z; cS), T )(Φ0)z dz−G, (5.7)

whereG = σκ0 +αV0. Comparing with (3.20), it follows that roots of E(cS) correspond to solutions of the system
(3.17) and (3.22). We can now characterize when a unique solutions exists.

Theorem 2. Let V0, κ0, T be given. The function E(cS) is decreasing, and therefore if

E(0) ≥ 0, E(1) ≤ 0 (5.8)

there is a unique c∗S solving E(c∗S) = 0.

Proof. Let c1, c2 be two values of cS for which c1 > c2. Using Theorem 1(c) and the property ∂µ/∂φ > 0 gives

fφ(φ, c(z; c1), T )=
∫ c(z;c1)

0

∂µ

∂φ
(φ, c, T ) dc + f (φ, 0, T ) >

∫ c(z;c2)

0

∂µ

∂φ
(φ, c, T ) dc + f (φ, 0, T )

= fφ(φ, c(z; c2), T ), (5.9)

which results in

E(c1) =
∫ ∞

−∞
fφ(Φ0, c(z; c1), T )(Φ0)z dz−G <

∫ ∞

−∞
fφ(Φ0, c(z; c2), T )(Φ0)z dz−G = E(c2) (5.10)

so E must be a decreasing function. The existence of a unique root follows from the intermediate value
theorem. �
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6. Alternative scales

We have noted a breakdown in the asymptotic solution in certain regimes, especially when the velocity becomes
particularly large. It is therefore necessary to consider different scales of parameters and repeat the asymptotic
analysis with these changes.

6.1. Rapid, diffusionless growth

The first case we consider is that where the growth velocity is large enough so that

ρ = O(ε). (6.1)

The segregation of solute (3.17) now satisfies at leading order

−V0(C0)z = 0. (6.2)

The interface composition is the constant value cL, representing complete solute trapping. The free energy balance
(3.22) is now

αV0 + σκ0 = f (−1, cL, T )− f (1, cL, T ). (6.3)

The important difference is that the Stefan condition (3.18) becomes

∂µL

∂n

∣∣∣∣
ΓL

= 0

which is the same as requiring ∂c/∂n = 0 on the liquid side of the interface. Notice that there is no constraint put
on the velocity by this condition. Therefore, we should interpret (6.3) as an expression for the velocity, rather than
for interfacial composition as in Eq. (5.4).

The resulting free boundary problem is

ct = ML�c, x ∈ ΩL, (6.4)

∂c

∂n

∣∣∣∣
ΓL

= 0, (6.5)

V = 1

α
(f (−1, cL, T )− f (1, cL, T )− σκ0). (6.6)

This describes “diffusionless” growth, where diffusion in the liquid side is unnecessary to drive the phase change.
As an example, we might imagine that the liquid side concentration is uniform, so that the interface motion is

given by a simple law of the form

V = −Aκ + B, A,B > 0. (6.7)

This is a well-known geometric model for crystal growth [21].

6.2. Near equilibrium growth

Suppose now that the velocity scale was small enough so that

ρ = O(ε−1). (6.8)
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In this case, the non-dimensional diffusion is not small at the interface. Eq. (3.17) will change to yield M0 =
constant, which means that no solute trapping will occur, and the interface concentrations will be given by their
equilibrium values by solving (5.1) and (5.2). The particular free boundary problem whose results has been discussed
before [7,25], so we will not write it here.

7. Computational example

For purposes of comparison to other studies, a particular example will be used. The specific model follows that
of Ref. [1], with physical parameters appropriate for a Ni–Cu alloy.

The bulk free energy density is

f (φ, c, T ) = cfB(φ, T )+ (1 − c)fA(φ, T )+ RT

vm
I (c), (7.1)

where I (c) = c ln c + (1 − c) ln(1 − c) is related to the entropy of mixing. The free energies for the individual
species are

fA,B = LA,B
T − TA,B

TA,B
p(φ), (7.2)

where LA,B are the latent heats, TA,B the melting temperatures and p(φ) = 3
4 (φ − φ3). The choices we make for

g, q are

g(φ) = 9
32 (1 − φ2)2, q(φ) = 1

2 (φ + 1). (7.3)

Fig. 3. The segregation coefficient k = cS/cL as a function of the non-dimensional growth velocity V0ε/ML. The squares are solutions to the
interface conditions. The solid line is a least-squares fit of the solute trapping function of Aziz et al. (7.8).
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The parameter α may be related to the kinetic mobility by considering pure species A only. A one-dimensional
traveling wave solution may be sought which solves

ε2φxx + ε2V
α

σ
+ g′(φ)+ ε

σ

∂fA

∂φ
= 0. (7.4)

Multiplying this by φx and integrating gives

εV α

∫ ∞

−∞
φ2
x dx = LA

TA − T
TA

. (7.5)

Near equilibrium,
∫∞
−∞φ

2
x dx ≈ ε−1, so the velocity is

V = µ̃(TA − T ), (7.6)

where the kinetic coefficient µ̃ = LA/(TAα) is known experimentally.
The computation of cS and cL followed the construction given in Theorems 1 and 2. The unique root of the

functional (5.7) was found by a simple bisection method with cS as the independent variable. Computing this func-
tional relied on knowing the entire solute profile c(z), which was determined by simply integrating Eqs. (4.1)–(4.4)
numerically.

The unique solute profile determines the segregation coefficient

k = cS

cL
. (7.7)

This was evaluated for different solidification velocities and assuming a flat (κ = 0) interface. Fig. 3 shows the
computed values of k versus the non-dimensional velocity V ′ = V0ε/ML. As V ′ increased beyond about 103,
solutions ceased to exist.

Fig. 4. The kinetic phase diagram for three different growth velocities. The liquidus curves are shown as dashed lines, and the solidus curves as
solid lines. As the velocity increases, the curves approach the T0-line. Note that the scales have been exaggerated to show the difference between
curves. The apparent cusps in the figure are only artifacts of this exaggeration.
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The continuous growth model of Aziz and Kaplan [3] provides the expression

k = ke + V/Vd

1 + V/Vd
(7.8)

for the partition coefficient of dilute solutions, whereVd is the characteristic velocity associated with solute trapping.
For comparison, this function is also shown in Fig. 3. The value for Vd was determined by a least-squares fit. Our
computation also agrees quite well with that of Ahmad et al. [1].

As a second example we compute the complete phase diagram for the example above at several different velocities.
The results are given in Fig. 4. As the velocity increases, the non-equilibrium liquidus and solidus approach the
T0-line. These computations agree in a qualitative sense with those in Ref. [3].

8. Conclusions

A theory for the rapid solidification of binary alloys has been presented. By a careful consideration of the scales
involves, the small interface width analysis allows a precise connection between sharp interface and phase field
models to be established. In the case of intermediate velocity scales, it was possible to construct the phase diagram
for a wide range of velocities, demonstrating solute trapping effects.

The critical velocity for solute trapping was given in Eq. (2.19). Said differently, this is the scale where the
diffusion length in the solid becomes comparable to the interface width, which necessitates a theory which provides
descriptions at small scales, such as phase field models do. Note, however, that the crucial aspect of the asymptotic
analysis was that that the ratio of diffusion length to interface width was maintained, not merely that the interface
width was taken to be small. For purposes of numerical computation this is very important, since it is prohibitively
inefficient to use the actual interface width for complex simulations.

The model we have used contains a fair amount of generality, although other phenomenon, such as heat flow and
surface energy anisotropy should be included in a realistic model. We do not expect these to change the essence of
the analysis, however, since these effects do not typically vary on the interfacial length scale.
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