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This paper introduces numerical time discretization methods which significantly improve 
the accuracy of the convexity-splitting approach of Eyre (1998) [7], while retaining the 
same numerical cost and stability properties.
A first order method is constructed by iteration of a semi-implicit method based upon 
decomposing the energy into convex and concave parts. A second order method is also 
presented based on backwards differentiation formulas. Several extrapolation procedures 
for iteration initialization are proposed. We show that, under broad circumstances, these 
methods have an energy decreasing property, leading to good numerical stability.
The new schemes are tested using two evolution equations commonly used in materials 
science: the Cahn–Hilliard equation and the phase field crystal equation. We find that our 
methods can increase accuracy by many orders of magnitude in comparison to the original 
convexity-splitting algorithm. In addition, the optimal methods require little or no iteration, 
making their computation cost similar to the original algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

High order parabolic equations which derive from gradient descent of an energy functional (“gradient flows”) are com-
monly encountered in the study of material microstructure evolution and related phase field models [1,2]. Two extensively 
studied models in this class are the Cahn–Hilliard (CH) equation [3]

ut = �(−ε2�u + u3 − u), (1)

and phase field crystal (PFC) equation [4]

ut = �((� + 1)2u − ru + u3). (2)

Numerical methods with explicit time discretization are impractical for these equations because of limitations imposed 
by numerical stability. This has motivated the development of a variety of implicit and semi-implicit numerical methods 
[5–11]. A simple and elegant semi-implicit approach was formulated by Eyre [7]. Although it was originally introduced for 
the Cahn–Hilliard equation, it has been successfully implemented in many different contexts [11–14]. Various improvements 
and extensions of the method have also been made [15–17].
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In the algorithm’s most basic form, an energy function F (u) is decomposed into convex and concave parts as F =
F+ + F− . For a gradient flow of the form ut = −∇ F (u), the method treats the convex part implicitly, and the concave part 
explicitly, leading to the formally first order method

un+1 − un

h
= −∇ F+(un+1) − ∇ F−(un), (3)

where un is an approximation to u(nh) and h is the timestep. For this scheme, it can be shown that the energy decreasing 
property holds in a discrete way: F (un+1) ≤ F (un). An algorithm with this property is said to be energetically stable. Under 
some circumstances, this notion of stability coincides with the usual idea of unconditional numerical stability.

The main advantage to the convexity splitting method is that ∇ F+ can often be chosen to be linear, and moreover 
I + h∇ F+ is often easy to invert. This means that (3) can be accomplished very efficiently, without the need for Newton-
iteration steps and various sorts of linear algebra typical of fully implicit methods. In addition, practical implementations in 
phase field modeling appears to produce qualitatively correct features, such as the development and propagation of inter-
faces. On the other hand, it has been widely observed that the convexity-splitting scheme can have large temporal errors [9,
18,19]. The purpose of this paper is to improve the accuracy of the convexity splitting approach while retaining all of its other benefits.

Our new methods fall into a broad class of semi-implicit algorithms for high order parabolic equations [9,20–22]. There 
have been several recent advances for these types of methods in the context of materials science. The approach proposed 
by Hu et al. [22] used finite differences and a multi-grid approach to solve the PFC equation. Gomez and Hughes [9]
introduced a second order accurate in time variational method for the CH equation, using mixed finite elements in space. 
Second order accurate algorithms have also been used for the PFC equation by Vignal et al. [21]. The work in [21] presented 
a computational framework that relies on the convex-concave splitting approach. Christlieb et al. [20] suggested that high 
accuracy can be achieved using fully implicit methods with a pseudo-spectral spatial discretization, employing Newton 
iterations and a conjugate gradient solver.

In this paper, we utilize the convexity splitting of the free energy as a basis for new algorithms, based upon various 
combinations of iteration, extrapolation, and higher order discretization. In section 2, we review the variational formulation 
of abstract gradient flow equations and explain stability of convexity splitting methods in this context. Iterative and higher 
order algorithms are introduced in section 3, which are shown to be energetically stable under broad circumstances. These 
methods are tested in section 4 for the Cahn–Hilliard and phase field crystal equations.

2. Generalized gradient flows and their variational characterization

Often gradient flows arise as steepest descent of a functional in a general function space whose geometry is given by an 
inner product. Suppose S is affine to a Hilbert space H , i.e.

S = {u|u = u0 + w, w ∈ H}.
Let 〈·, ·〉 be some inner product on that space (we remark that this does not have to correspond to the “natural” inner 
product of H). Given a smooth functional F (u) : S → R, the gradient flow of F with respect to S is a solution u(t) ∈ S ×[0, ∞)

of the weak equation

〈ut, w〉 = −(δF (u), w), w ∈ H . (4)

The right hand side denotes the directional derivative

(δF (u),ϕ) = lim
δ→0

F (u + δϕ) − F (u)

δ
,

which is assumed to always exist in what follows.
There is a variational principle associated with (4) which may be exploited. It is easy to show that (4) arises from 

minimization of a “Rayleigh” functional

R(w) = 1

2
〈w, w〉 + (δF (u), w). (5)

That is, if a unique critical point wc of R exists at each time t , then ut = wc . Informally, this means that a gradient flow 
seeks the direction of greatest energy decrease, subject to an energy dissipation penalty prescribed by the inner product.

In the context of PDEs, H is typically a Sobolev space such as H s(�) endowed with an inner product from a weaker 
space (e.g. Hq(�) with q < s). In the case S = L2(�) is equipped with its usual inner product, equation (4) is just∫

�

ut w dx = −
∫
�

δF (u) w dx, w ∈ L2(�), (6)

which leads equations of the form ut = −δF (u). In the materials science literature, this gradient flow is conventionally 
called “non-conserved dynamics”.
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Another common situation is where H = H1
0(�), where the inner product employed is that of the dual space H−1. For 

example, for the periodic domain � = ([0, 2π ]d), this inner product may be written in terms of the Fourier coefficients 
ŵ(k), v̂(k) as

〈v, w〉 =
∑
k 
=0

1

|k|2 v̂(k)ŵ∗(k),

which in terms of the inverse Laplacian is

〈v, w〉 = −
∫
�

vφ dx, �φ = w.

In this case equation (4) is a weak version of the higher order equation ut = �(δF (u)). Conventionally this gradient flow is 
called “conserved dynamics” since (with suitable boundary conditions) the mean value of u is always equal to u0.

2.1. Variational algorithms for generalized gradient flows

The variational principle (5) can be used as a basis to construct time discretization methods. The simplest idea is to 
replace the time derivative with its forward difference, which leads to

RBE(v) = 1

2h
〈v − un, v − un〉 + F (v). (7)

Critical points of this functional solve〈
un+1 − un

h
, w

〉
= −(δF (un+1), w), w ∈ H . (8)

Notice this is just the standard backward Euler (BE) method. Of course, the functional (7) may not have a unique critical 
point; this is indeed one of the drawbacks to fully-implicit discretizations. On the other hand, if un+1 is a minimizer of RBE , 
then clearly F (un+1) ≤ RBE(un+1) ≤ F (un). In this case, the method is energetically stable.

The convexity splitting algorithm (3) can be generalized as〈
un+1 − un

h
, w

〉
= −(δF+(un+1), w) − (δF−(un), w), w ∈ H . (CS)

It is easy to see formally that this method is the Euler–Lagrange equation for a “discrete” Rayleigh functional

RCS(v) = 1

2h
〈v − un, v − un〉 + F+(v) + (δF−(un), v − un) + F−(un). (9)

This functional is necessarily convex, since the first two terms are convex and the last two are just the linearization of F−
around un . We suppose that F+ , F− are chosen so that the following property holds.

For un ∈ S , the functional RCS has a minimizer in S . (10)

For most parabolic equations of interest, this property is easily verified using classical results of the calculus of variations. 
We can show that under these conditions, the time discretization method (CS) produces a unique answer, and the method 
is an energetically stable algorithm.

Proposition 1. Suppose that (10) holds. Given un ∈ S, there exists a unique solution un+1 ∈ S satisfying (CS) and F (un+1) ≤ F (un).

Proof. Since (10) provides a minimizer un+1 of (9), usual arguments in the calculus of variations show that (CS) also holds. 
Uniqueness of critical points satisfying (CS) follows from the fact that RCS is convex.

Since F− is concave, its graph sits below the hyperplane tangent to un , which is represented by the last two terms in 
(9). It follows that

F (un+1) = F+(un+1) + F−(un+1)

≤ F+(un+1) + (δF−(un), un+1 − un) + F−(un) ≤ RCS(un+1).

On the other hand, since un+1 minimizes RCS , then RCS(un+1) ≤ RCS(un) = F (un). �
The relation between convexity splitting and backward Euler methods is more transparent by comparing the correspond-

ing discrete Rayleigh functionals. In particular, (9) simply replaces the concave part F− in (7) with its linearization at un . 
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Unless un and un+1 are close, this can be a rather crude approximation; this suggests that the differences between CS and
BE methods can be significant. Although both methods are first order, it has been noted empirically that the CS method 
performs substantially worse in terms of accuracy [20]. On the other hand, implementation of the BE scheme uses linear 
and nonlinear solvers which tend to be inefficient.

3. Iterative and higher order convexity splitting methods

It is now shown how to improve the accuracy of the convexity splitting approach, while retaining its simplicity, efficiency 
and stability properties. We propose the following iterative convexity splitting schemes

un+1 := u∗
K ,〈

u∗
j − un

h
, w

〉
= −(δF+(u∗

j ), w) − (δF−(u∗
j−1), w), w ∈ H, j = 1,2, . . . , K ,

(ICSK )

where the initial iterate u∗
0 will be prescribed later by various extrapolation methods. In less abstract terms, for the specific 

cases of (non-conserved and conserved) L2 and H−1 gradient flows, the method can be written as

u∗
j + h[δF+(u∗

j )] = un − h[δF−(u∗
j−1)], L2 gradient flow (11)

u∗
j − h�[δF+(u∗

j )] = un + h�[δF−(u∗
j−1)], H−1 gradient flow (12)

for j = 1, 2, . . . , K .
With the simplest possible initial iterate u∗

0 = un , the ICS1 method is the same as the original CS scheme. One key to the 
success of the new methods is a choice of a better initial guess using some kind of extrapolation. A natural choice is simple 
linear extrapolation,

u∗
0 = 2un − un−1. (LINX)

Of course this requires that two sequential steps be known initially; we explain how this can be accomplished later. Other 
extrapolation methods based upon the structure of the particular equation are detailed below, and in some cases provide 
better stability and accuracy.

3.1. Higher order backward difference formula methods

It is natural to replace the first order finite difference approximation of the time derivative in (ICSK ) with a higher order 
one. This can be done using standard backward differentiation formulas, giving a new method

un+1 := u∗
K ,〈 3

2 u∗
j − 2un + 1

2 un−1

h
, w

〉
= −(δF+(u∗

j ), w) − (δF−(u∗
j−1), w), w ∈ H, j = 1,2, . . . , K .

(BDCSK )

For the specific inner products discussed above, the method reads

3

2
u∗

j + h[δF+(u∗
j )] = 2un − 1

2
un−1 − h[δF−(u∗

j−1)], L2 gradient flow (13)

3

2
u∗

j − h�[δF+(u∗
j )] = 2un − 1

2
un−1 + h�[δF−(u∗

j−1)], H−1 gradient flow (14)

Of course, it is again necessary to specify an initial guess u∗
0 for the iteration. In general, this should be done using 

higher order extrapolation to maintain the same order of accuracy. Formulas are given for test problems below.

3.2. Relationship to fully implicit methods

The methods (ICSK ) and (BDCSK ) are related to the fully implicit first and second order backwards difference methods as 
follows. Suppose that, for either method, as K → ∞, u∗

j converges to u∗∞ . We note that this convergence is not guaranteed, 
or even a desirable property. Nonetheless, for the first order case it is easy to see that u∗∞ is a critical point of (7). In other 
words, un+1 = u∗∞ is a solution of the BE method. For the second order method, un+1 = u∗∞ formally solves〈

3
2 un+1 − 2un + 1

2 un−1

h
, w

〉
= −(δF (un+1), w), w ∈ H . (15)

This is in fact the standard fully implicit second order BDF method.
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It should be clearly stated, however, that the goal here is to approximate the actual evolution equation and not simply 
reproduce the results of a fully implicit scheme. We find below that a small number of iterations with small timestep is 
often more efficient than many iterations with a larger timestep. In fact, in some cases choosing K = 1 is best. Note that 
with linear extrapolation (for example), the iteration free first order method is really just a predictor–corrector type of 
algorithm reading〈

un+1 − un

h
, w

〉
= −(δF+(un+1), w) − (δF−(2un − un−1), w), w ∈ H . (16)

3.3. Energetic stability

The iteration steps in (ICSK ) and (BDCSK ) are themselves variational in nature, and can in fact by viewed as a relaxation 
of Rayleigh-type functionals. The first order method, for example, can be seen as attempting to minimize the functional RBE

by equation (7). By contrast, the second order method will be seen as a relaxation of

RBDF(v) = 1

3h

〈
3

2
v − 2un + 1

2
un−1,

3

2
v − 2un + 1

2
un−1

〉
+ F (v). (17)

This characterization of the proposed methods can be used to show that like the original method (3), they can also be 
energetically stable. We make this idea precise with the following proposition.

Proposition 2. Suppose that (10) holds. Given u∗
j−1 , there exists a unique solution u∗

j satisfying either (ICSK ) or (BDCSK ). If the initial 
iteration is chosen so that

RBE(u∗
0) ≤ F (un), RBDF(u∗

0) ≤ F (un), (18)

for (ICSK ) and (BDCSK ), respectively, then F (un+1) ≤ F (un).

Proof. Note that (ICSK ) is the Euler–Lagrange equation for

R j(v) = 1

2h
〈v − un, v − un〉 + F+(v) + (δF−(u∗

j−1), v − u∗
j−1) + F−(u∗

j−1). (19)

Since R j is a functional of the form (9), property (10) and convexity guarantee existence and uniqueness of a minimizer 
which also solves (ICSK ). Similarly, the iteration u∗

j of (BDCSK ) are unique minimizers of

R2 j(v) = 1

3h

〈
3

2
v − 2un + 1

2
un−1,

3

2
v − 2un + 1

2
un−1

〉
+ F+(v) + (δF−(u∗

j−1), v − u∗
j−1) + F−(u∗

j−1), (20)

which are unique solutions of (BDCSK ).
By virtue of concavity of F− , we have RBE(u∗

j ) ≤ R j(u∗
j ), and since u∗

j minimizes R j , it follows that

RBE(u∗
j ) ≤ R j(u∗

j ) ≤ R j(u∗
j−1) = RBE(u∗

j−1).

Then it follows from induction that

F (un+1) ≤ RBE(un+1) ≤ . . . ≤ RBE(u∗
0) ≤ F (un).

The proof for energetic stability of (BDCSK ) is identical, with R2 j replacing R j . �
Condition (18) entirely depends on the extrapolation procedure used to find u∗

0. Note that (18) can always be satisfied 
since the trivial choice u∗

0 = un gives RBE(u∗
0) = RBDF(u∗

0) = F (un). In practice, we find polynomial extrapolations also gener-
ally work, so long as the time step h is not too large. Potentially, the condition (18) could be utilized as a heuristic criterion
for dynamically adapting the time step h, although we do not pursue this idea here.

3.4. Initialization of multi-step extrapolation

A multi-step extrapolation formula such as (LINX) requires accurate knowledge of sequential steps un and un−1 to pro-
duce a usefully accurate prediction. It is assumed that to begin with, however, only initial data u0 is prescribed. A simple 
way of obtaining an accurate next step is to simply use very small timesteps h/Nsmall , where Nsmall � 1. Then after Nsmall
steps of some prescribed one-step method (for example CS or BE), the solution should be some accurate approximation of 
u1. Thereafter, a full sized timestep h can be used.

Unfortunately, even though this process is executed only once, it still can be numerically expensive. We have found 
a more efficient way to obtain good initial steps based on a repeated doubling of the timestep, which is initially chosen 
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to be very small. Let un+1 = I(un−1, un; h) denote the result of the first order method (with some given K ) using linear 
extrapolation based on the sequential steps un−1 and un , and let wk be an approximation to the solution at t = h/2k . Then 
we find wk recursively as

wk−1 = I(u0, wk;h/2k), k = kmax,kmax − 1, . . . ,1.

This process is initialized by setting wkmax = u0 for some maximum number of step doublings kmax. At the end of recursion, 
u1 is set equal to w0. In general this seems to provide an accurate enough starting point for the numerical tests described 
below. Generalization of this idea to higher order multistep methods is straightforward.

4. Numerical implementation and performance

We now describe how the new methods can be utilized in problems of practical interest. Numerical experiments are con-
ducted for the evolution equations (1) and (2). Various combinations of iteration and timestep parameters are investigated 
to assess accuracy and stability.

The computational time is largely proportional to the total number of iterations of the basic first order (ICSK ) or sec-
ond order (BDCSK ) semi-implicit schemes. In practice, the computational cost per iteration is essentially identical among 
these schemes since the implicit part is solved within the framework of a Fourier pseudo-spectral discretization. From a 
perspective of numerical efficiency, the goal is therefore to minimize the total number of iterations for a given level of 
accuracy.

For the test problems below, our domain is a box [0, L]2. Periodic boundary conditions are assumed, which allows for a 
standard Fourier pseudo-spectral discretization [23]. For L = 2π , this approximation takes the form

u ≈
N∑

kx=1

N∑
ky=1

û(kx,ky, t)exp
[

2π i
(
ω(kx)x + ω(ky)y

)]
,

where ω(kx), ω(ky) are the correctly aliased wavenumbers. The discrete Fourier transform is used to compute û, and can 
be written as a linear map û =Fu. The Laplacian is therefore discretized as

�u ≈ F−1
Fu

where 
 is just the diagonal multiplication operator 
û = −[ω(kx)
2 + ω(ky)

2]û. Note that any rational function of the 
Laplacian can be similarly computed by spectral mapping, for example inverses like

(I + h�)−1u = F−1(1 + h
)−1Fu.

The time discretization methods described are implemented for the exact functional and inner product, after which the 
spatial approximations are applied. In some cases, it is possible to show that the energy decreasing property is retained 
for a spatially discrete version of the energy functional (e.g. [11,19]). We also note that spectral methods are known to 
be exponentially accurate, so it is unlikely that the spatial discretization used here will have a large effect on the overall 
variational properties of our methods.

4.1. Cahn–Hilliard equation

Cahn and Hilliard [3] introduced a well-studied model (1) for phase separation of two materials. This equation can be 
cast as a generalized gradient flow in H−1 of the free energy

F (u) =
∫
�

ε2

2
|∇u|2 + u4/4 − u2/2 dx. (21)

For ε 
 1, random initial data will evolve to create domains where u ≈ ±1, which are separated by diffuse interfaces having 
the form

u ≈ tanh(
√

2z/ε), (22)

where z is a coordinate transverse to the interface.
The nonlinear term can be split into convex and concave parts as

u4

4
− u2

2
= au2

2
+

(
u4

4
− [1 + a]u2

2

)
≡ f+(u) + f−(u),

where a > 0 is an adjustable parameter. Clearly f ′′+(u) > 0, and f ′′−(u) < 0 provided a > 2 and −1 < u < 1. We remark that 
the fourth order equation lacks a maximum principle to guarantee the bound on u, but it seems to hold nonetheless. In 
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Fig. 1. Simulation of two-dimensional spinodal decomposition was used as our test problem. Left: Snapshot at time t = 0 with well-developed phase 
segregated domains. Right: Configuration at the final time t = 3.2.

practice, there is a trade-off between choosing a large for improved stability and choosing a smaller which tends to yield 
smaller errors. For our tests, we have determined empirically that choosing a = 3/2 provides a good trade-off between these 
two aims. The ICSK method reads in this case

u∗
j − un

h
= (−ε2�2 + a�)u∗

j + �
[
(u∗

j−1)
3 − (1 + a)u∗

j−1

]
.

A reasonable initial condition was generated by first evolving random noise to a state where there were well-formed 
diffuse interfaces. The simulation was performed on a 256 × 256 grid for the spatial domain � = [0, π ]2 with ε = 0.02. 
Fig. 1 shows the snapshots of the 2D spinodal decomposition simulation of a binary mixture with the initial configuration 
(left) and the evolved configuration at a fixed final time. An accurate comparison solution uex was obtained by using a very 
small step h, and compared at time t f = 3.2 to simulations for various h and K by computing the L1 norm

Error =
∫
�

|u − uex|(·, t f )dx

Two extrapolation procedures were investigated: linear extrapolation (LINX) and a nonlinear version obtained by apply-
ing linear extrapolation to a transformed variable ψ :

u∗
0 = α tanh(2ψn − ψn−1), ψn = tanh−1(un/α). (NLX)

The motivation for this extrapolation formula comes from the structure of the internal layers given by (22). The variable ψ
is roughly proportional to z, which is the signed distance to the diffuse interface. For interfaces which are flat and moving 
at constant velocity V , it follows that ψ ∼ z − V t . In this case, linear extrapolation of ψ would be exact, whereas linear 
extrapolation of u would not. Since there is no guarantee that |un| < 1, it is necessary to choose α slightly bigger than one 
so that un/α is in the domain of the inverse hyperbolic tangent. The errors tend to increase if α is chosen larger, however. 
Choosing α = 1.01 provides good results in our tests.

Our numerical experiments confirm the predicted energy-decreasing property of the new methods (Fig. 2). The free 
energy (21) was computed with a standard trapezoid rule and finite differences. The computation employs the particular 
parameters h = 0.01 and K = 2 for each of the methods ICS–LINX, ICS–NLX, BDCS–QEX and BDCS–NQLX. We find similar 
results for essentially all the test cases represented in Figs. 3–5, except where instability was observed in the second-order 
methods. Of course, the conclusion of Proposition 2 is not valid if the extrapolation energy F (u∗

0) is higher than F (un), 
which might occur for extremely large timesteps. Indeed, numerical experiments for timesteps higher than those in Fig. 3
do show a non-monotone evolution of the energy, as well as impractically large errors.

Errors are reported in Fig. 3, as a function of an effective timestep h/K , which is ideally as large as possible for a 
given level of accuracy. By comparison, the original CS method is dramatically worse, with errors roughly 103 larger than 
the method with K = 1. On the other hand, the numerical effort of the two methods is nearly identical, except for the 
computationally cheap extrapolation calculation.

We find that the nonlinear extrapolation (NLX) performs slightly better than linear extrapolation. Iteration does improve 
the overall accuracy of the method, but not enough to justify the computational effort. In all cases it was found that simply 
reducing the timestep is more efficient to maintain accuracy. As a consequence, the optimal first order method is not 
iterative at all; it is really a predictor–corrector method like (16).

We also implemented the second order method using the same test problem. The BDCSK method for the Cahn–Hilliard 
equation amounts to solving
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Fig. 2. Time evolution of the free energy functional for the Cahn–Hilliard equation. We have appended to the energy curve snapshots of the solution to 
illustrate the dynamical process associated with energy decay.

Fig. 3. Accuracy measured as the L1-error at time t = 3.2, versus the effective timestep h/K . Solid (blue) lines indicate errors using linear extrapolation
LINX and dashed lines correspond to nonlinear extrapolation NLX. For comparison, errors for the original CS scheme are also reported. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

3
2 u∗

j − 2un + 1
2 un−1

h
= (−ε2�2 + a�)u∗

j + �
[
(u∗

j−1)
3 − (1 + a)u∗

j−1

]
.

If second order accuracy is to be obtained, then the extrapolation step for u∗
0 also needs to be higher order. Two versions 

based on quadratic polynomial extrapolation were investigated, one linear in u and one nonlinear:

u∗
0 = 3un − 3un−1 + un−2 (QEX)

u∗
0 = α tanh(3ψn − 3ψn−1 + ψn−2), ψn = tanh−1(un/α). (NLQX)

Figs. 4 and 5 report numerical errors for the second order scheme BDCS–QEX and BDCS–NLQX respectively. It can be 
seen that the scheme BDCS–QEX using k > 1 is more accurate than ICS–LINX provided the effective timestep is approxi-
mately less than 10−3. For K > 2 and h/K approximately less than 10−2.4, the BDCS–NLQX scheme exceeds the accuracy 
and performance of the ICS–LINX scheme.

For large enough timesteps, the second order method exhibited a mild amount of instability unless iteration was used. 
This explains the dramatic increase in error in Figs. 4 and 5. In general, instability was easy to control by simply increasing 
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Fig. 4. Accuracy measured as the L1-error at time t = 3.2, versus the effective timestep h/K . Blue lines indicate errors using linear quadratic extrapolation
BDCS–QEX and the lower solid black line corresponds to the optimal first order method. The upper black line is the error for the original first order CS 
scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Accuracy measured as the L1-error at time t = 3.2, versus the effective timestep h/K . Blue lines indicate errors using nonlinear quadratic extrap-
olation BDCS–NLQX and the lower solid black line corresponds to the optimal first order method. The upper black line is the error for the CS scheme. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the number of iterations K by a small amount. We found that nonlinear extrapolation generally had better stability prop-
erties than linear extrapolation. For example, with k = 8 the method (QEX) was unstable when h > 2.4 × 10−2, whereas 
(NLQX) was stable for h < 8 × 10−2.

4.2. Phase field crystal equation

The phase field crystal (PFC) equation (2) was introduced by Elder and Grant [4] as a continuum model of crystalline 
phase ordering which incorporates descriptions of lattice defects. This equation also represents a gradient flow in H−1, 
where the free energy is of higher spatial order:

F (u) =
∫

1
u4 + 1 − r

u2 − |∇u|2 + 1
(�u)2dx.
4 2 2
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Fig. 6. The simulation of the two-dimensional growth of a crystal in a supercooled liquid is used as our test problem. Snapshots of the numerical simulations 
for the PFC equation are given. Left: t = 0 is the initial seed configuration. Right: t = 12.8 is the final time for crystal growth.

For large enough r, there is a pattern forming instability which gives either stripes or hexagonal lattices depending on the 
conserved spatial average of u.

In this case convexity splitting can be achieved using

F+(u) =
∫

1 − r + a

2
u2 + 1

2
(�u)2dx, F−(u) =

∫
1

4
u4 − a

2
u2 − |∇u|2dx,

where if a > 0 is large enough then F− is concave. The term u4/4 − au2/2 will be concave provided a > 3||u2||∞ . As with 
the Cahn–Hilliard equation, there is no maximum principle to bound u. On the other hand, in practice the solution does not 
get too large and a fixed value for a is sufficient. As before, if the parameter a is too small, stability will be lost and if it is 
too large, high truncation errors will be observed. When r = 1/2 we find that the choice a = 2 provides a good compromise.

The corresponding (ICSK ) method reads

u∗
j − un

h
=

[
(1 − r + a)� + �3

]
u∗

j + �
[
(u∗

j−1)
3 − au∗

j−1 + 2�u∗
j−1

]
, (23)

which was implemented together with the linear first order extrapolation formula (LINX). The (BDCSK ) method in this 
case is

3
2 u∗

j − 2un + 1
2 un−1

h
=

[
(1 − r + a)� + �3

]
u∗

j + �
[
(u∗

j−1)
3 − au∗

j−1 + 2�u∗
j−1

]
, (24)

which was used in conjunction with quadratic extrapolation (QEX).
For our test problem, we consider the two-dimensional growth of a crystal in a supercooled liquid as it was done in [21]

and [4]. The initial seed crystal is represented mathematically with the following initial condition

uo(x) = ū + ω(x)(Aus(x))

where us(x) = cos(qy/
√

(3)) cos(qx) − 1/2 cos(2qy/
√

(3)), ω(x) = (1 − (||x − xo||/do)
2)2 if ||x − xo|| ≤ do , 0 otherwise. Here 

xo is the center of the domain, do is 1/6 of the domain length in the x-direction. The other parameters were ε = 0.325, 
ū = √

ε/2, A = 4/5(ū+√
15ε − 36ū2/3) and q = √

3/2. The simulations for the PFC equation were performed on a 256 ×256
grid for the spatial domain � = [0, 40π/

√
3]2 with the r = 1/2. Similar initial configurations for the PFC equation are found 

in [24] and [11].
In Fig. 6, we present snapshots of the simulations for the solid crystallite that is initially placed in the center of the 

liquid domain (left) and also for the evolved crystal at t = 12.8 (right). Fig. 7 analyzes the time evolution of the PFC energy 
functional for the particular values h = 0.01 and K = 1, although the other tests represented in Figs. 8–9 give nearly the 
same curves. The results for both the ICS–LINX and BDCS–QEX methods roughly coincide. The errors for the ICS–LINX and
BDCS–QEX schemes are reported in Figs. 8 and 9, respectively. The experiment shows that ICS–LINX exceeds the accuracy 
of the original CS scheme by factors of ≈ 50 for the optimal K = 1 scheme. The BDCS–QEX scheme is found to be stable 
for solving the PFC equation regardless of the timestep size or number of iterations implemented, at least over the range of 
parameters tested. In general, it appears that the second order method is almost always better than the first order method, 
in the sense of maximizing the effective timestep for a given level of accuracy.

5. Conclusion

This paper presented novel numerical methods for gradient flow evolution equations which have good accuracy proper-
ties. The real advantage of these methods is that they retain the efficiency and ease of implementation found in the original 
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Fig. 7. Evolution of the free energy for the phase field crystal equation. The results for the first and second order methods nearly coincide.

Fig. 8. Accuracy measured as the L1-error at time t = 12.8, versus the effective timestep h/K . Dashed (blue) lines indicate errors for the ICS–LINX method 
and the solid black line corresponds to the original convexity splitting CS scheme. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

convexity splitting approach [7], while providing significantly better accuracy. In general, we have found that considerable 
iteration of our schemes is not necessary, and is less efficient than simply choosing small step sizes. For problems with 
high accuracy requirements, the second order BDCS method appears to be the best choice of those considered. On the other 
hand, the stability properties of this method may or may not render it less efficient than the first order method when 
accuracy requirements are only modest.

We do not have a good assessment of the performance of these new methods in comparison to other semi-implicit 
[8] or fully implicit [20] approaches for similar problems. Such a comparison would have to control for differences in 
computational implementation as well as consider the effect of user-selected tolerance parameters (in, for example, iterative 
linear algebra algorithms). This might make a definitive comparison difficult to obtain.

The robustness and simplicity of our proposed methods suggest that they may be adapted to a wide variety of evolution 
problems with a variational structure. This includes the vast array of energy-driven models arising in materials science and 
condensed matter physics [2], as well as optimization and image processing applications (e.g. [25]).
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Fig. 9. Accuracy measured as the L1-error at time t = 12.8, versus the effective timestep h/K . Dashed (blue) lines indicate errors for the BDCS–QEX method 
and the lower solid black line corresponds to optimal first order scheme. The upper black line is the error for the CS scheme. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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