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Abstract

We study a dual front behavior observed in a reaction–diffusion system arising initially in the context of phase field models.
A precursor front propagates into a stable phase, generating a metastable “intermediate phase”. This intermediate phase then
decays via an oscillating front, producing a periodic structure which later coarsens. Unlike previously studied models in
which dual fronts appear, the appearance of the split front is controlled not by an interchange of wave speeds, but by the
existence of the precursor wave. By means of an expansion in small thermal diffusivity, we argue that this behavior is generic.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important element in the study of pattern formation is the propagation of fronts by means of which the system
moves from one state to another. For example, if the system is initially prepared in a uniform stationary state B
(stable or unstable), then we would write B→ A to denote a front advancing into the B state, leaving a (presumably
stable) state A in its wake. The speed of advance,vAB, is determined by the properties of the states A and B, and
the dynamics of the system.

In systems possessing three stationary states, A, B, and C, there is a wider variety of possibilities. We shall
suppose that the system is initially prepared in state C, and that state A is in some sense the “most stable” state
to which the system is attracted. The decomposition from C to A may proceed either by means of a single front
C → A with a velocityvAC, or via the “intermediate” state B as the pair of fronts C→ B → A with velocitiesvBC

andvAB (Fig. 1).
The stability of the phases A, B and C are of great importance in characterizing types of dual front behavior.

Bechhoefer et al. [5,27] considered the case

stable C→ stable B→ stable A (1)
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Fig. 1. Schematic view of dual connecting three states. This is sketched as though the state were characterized by a single parameter, though
most systems of interest have multiple state components.

as a model of the dynamical generation of the “metastable” state B; although B is stable to small perturbations, it is
driven out by A. Both fronts AB and BC in this model are both of “bistable” type: their speeds can be determined
by a well-known mechanical analogy (see, e.g., [8]) which gives unique wave speeds.

For this case, [5,27] established that, as system parameters were varied, a necessary and sufficient condition for
the appearance of the intermediate state B was that

vAB < vBC. (2)

If (2) is satisfied, then the system generates a longer and longer stretch of state B as the fronts advance; conversely,
if it is violated, then the trailing front will always catch up to the precursor front and coalesce with it. (Csahok and
Misbah [9] have considered a situation where the trailing front is repelled by the leading one, and the dual front
structure remains intact, but we may consider this structure as a single compound front.) Fife and McLeod [12]
showed rigorously for a single-component system that (2) was indeed necessary and sufficient for the appearance
of dual fronts.

Elmer et al. [11] considered a two-component system with

unstable C→ unstable B→ stable A (3)

in which state B has a saddle point structure. The precursor wave BC enters state B along its stable manifold and this
state decomposes along its unstable manifold, ending in state A. In this case, both waves are of “monostable” type,
and their speeds may be determined by the heuristic theory of marginal stability [10,30] which essentially states that
it is the linearized behavior near the unstable state which determines the front speed (for many systems, marginal
stability gives the correct speed, and the extended notion of “nonlinear marginal stability” [31] is not necessary).
Elmer et al. concluded that again, condition (2) was necessary and sufficient for the appearance of two fronts. The
existence of dual fronts in this case is rather remarkable, since the system is generating an increasingly large amount
of unstablestate as the fronts advance. Dual fronts of this type also appear in amplitude equations for competition
between roll and hexagonal convection patterns [9,24].

We are interested in a system whose structure is intermediate between (1) and (3). In the language of reaction–
diffusion models [17], one of our state variables is “conserved” rather than “nonconserved” as are the variables in
the examples above: the spatial integral of this variable is strictly constant, and it can change only bytransportof
the physical quantity it represents. Our intermediate state will bestableas a solution of the ordinary differential
equation (ODE) which neglects transport, butunstablein the dynamics of the full space-dependent problem; we
will call it metastable.

Our model is the one introduced as Model C by Halperin et al. [17]. These models describe the evolution of two
scalar variables: a nonconserved order parameterφ(x, t) and a conserved “energy”e(x, t) which is constructed
from φ and a “temperature”u(x, t). We shall refer toe as an energy andu as a temperature, which are appropriate
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for solidification of a pure material. In different problems these may represent different quantities, e.g., in alloy
solidification problems,e may be solute concentration andu may be chemical potential. The variables are scaled
so thatu = 0 represents the coexistence condition between the two phases; if the initial conditions haveu 6= 0 and
φ representing some phase interface, then fronts will propagate through the domain as the material changes phase.
These models have been used successfully for solidification problems [15,20] and have shown agreement with other
theories of phase dynamics [6,19,26].

The coupling between the order parameter and the temperature field is controlled by a parameterλ > 0. For small
λ, the only stable states are bulk liquid and solid, which we shall arbitrarily denote byφ = −1, 1, respectively.
Then, typical solutions to the system are propagating fronts joining these two phases. With boundary conditions
corresponding to undercooling below freezing temperature, these are solidification fronts. They propagate into the
locally stable liquid phase, converting it to the entropically more favorable stable solid phase.

Asλ is increased, an intermediate stateφm appears, metastable as described above, generated by a “precursor” front
propagating into the solid phase. Theφm phase then destabilizes by a process similar to spinodal decomposition,
decaying into a mixture of solid and liquid phases. This behavior was observed independently in [1] and by
Zukerman et al. [34]; in those simulations, the destabilization front advances more slowly than the precursor front,
and ever-increasing amounts of the intermediate state are generated as time advances.

Clearly, the speed condition (2) is necessary for the appearance of the intermediate phase. It would be natural to
suppose that, as for the systems with nonconserved parameters, that production of the intermediate state would be
controlled by that condition. Surprisingly, that is not the case.

The new contributions of this paper are as follows:
1. We clarify the role of the intermediate state in the context of thermodynamically consistent models, providing

necessary conditions for the dual front’s appearance. We show that for fixed (bulk) internal energy, this state is
a local minimum of the negative entropy, but nevertheless is destabilized by heat redistribution.

2. We derive the front velocities by an asymptotic analysis of the travelling wave problem for the leading front, and
of the marginal stability criteria for the oscillatory instability.

3. We determine that condition (2) is always the case for our situation, if the two fronts exist at all. The crucial
aspect of dual front formation here is the existence of the leading wave; even though the intermediate state has
lower negative entropy that the initial state, it may be dynamically inaccessible to the time-dependent system.
This phenomenon is very different from systems previously studied.

4. We provide a discussion of the physical interpretation of this phenomenon, suggesting links to other phase field
theories.

The rest of this paper is as follows. In Section 2, we present our phase-field model, and discuss the appearance of the
intermediate state. In Section 3, we determine the propagation velocities of the two fronts numerically. In Section
4, we carry out an asymptotic analysis for the two fronts.

2. The phase field model and front splitting

We shall work with the model in the “thermodynamically consistent” form [23,32], in one space dimension. In
this formulation, we begin with an expression for the total negative entropy of the system

S[φ, e] =
∫ ∞

−∞

(
s(φ, e) + 1

2
ε2φ2

x

)
dx, (4)

in which the scalar functions(φ, e) is the specific negative entropy, and the parameterε is a length scale which
will characterize typical transition layers. The internal energy densitye(x, t) is related to the temperatureu(x, t)
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by

e = u − 1
2p(φ),

wherep(φ) with p(±1) = ±1 is the enthalpy function. Since internal energy is a conserved quantity, it is more
convenient to construct the dynamics in terms ofe rather thanu.

We take the specific form

s(φ, e) = g(φ) + 1
2λu2 = g(φ) + 1

2λ(e + 1
2p(φ))2,

whereg(φ) is a smooth double-well potential with minimag(−1) = g(1) andg′(±1) = 0. The parameterλ simply
represents the coupling between the two fields; in the sharp interface limitε → 0, this parameter may be associated
with the inverse surface tension [6]. We require thatp′(±1) = 0 so thatφ = ±1 are stationary points ofs for any
value ofe, and thatp′′(±1) = 0 so that these stationary points are always localminimaof s. The simplest smooth
functions satisfying these conditions are

g(φ) = 1
4(1 − φ2)2, p(φ) = 15

8

(
φ − 2

3φ3 + 1
5φ5

)
.

Our results do not depend on the precise form ofs(φ, e), g(φ), or p(φ).
We define the time evolution ofφ ande as a gradient flow for the negative entropy functionalS[φ, e], thereby

guaranteeing thatS decreases monotonically in time. Corresponding to the interpretation ofφ as a nonconserved
quantity, and the integral ofe as a conserved quantity, we compute the gradients in theL2 norm forφ and in the
H−1 norm fore (see [23,28]).

This yields the evolution equations (see [23,32] for other derivations)

φt = −Dφ

δS

δφ

∣∣∣∣
L2

= Dφ(f (φ, u) + ε2φxx), et = −Du

δS

δe

∣∣∣∣
H−1

= Duλ∂xx

(
e + 1

2
p(φ)

)
= Duλuxx,

in which

f (φ, u) = − ∂s

∂φ

∣∣∣∣
e

= −g′(φ) − 1

2
λup′(φ).

The constantsDφ, Du are the rates of relaxation for each field. We may nondimensionalize by setting

t ′ = Dφt, x′ = ε−1x.

After dropping primes, the resulting system has the form

φt = f (φ, u) + φxx, (5)

et = Duxx, (6)

in which D = λDu/Dφ is a nondimensional ratio of thermal diffusivity to phase diffusivity. We note thatD is
frequently small since phase kinetics are typically much faster than thermal (or material) diffusion.

We are interested in problems where a solidification front is propagating into a uniform supercooled liquid,
defined by the boundary conditions

φ(+∞, t) = −1, u(+∞, t) = −∆,

where∆ is the nondimensional undercooling. The internal energy in the right state is therefore

e(+∞, t) ≡ e∞ = 1
2 − ∆.
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Fig. 2. Time-dependent simulation showing generation of the intermediate state, where the solid curves areφ and the dotted curves areu. The
initial condition is the step function on the far left. The other two profiles are fort = 5 and 10. The parameters are∆ = 0.7, andλ = 10 and
D = 1.

For ∆ > 0, the solid stateφ = 1 is more favorable than the liquid stateφ = −1, and we expect the solution
dynamics to be a wave moving to the right, generating solid state with

φ(−∞, t) = 1.

The value ofu in the left state is determined by conservation of energy; in a traveling wave solution both end states
must have the common valuee = e∞. Thus, a steady wave must have

u(−∞, t) = 1 − ∆ so thate(−∞, t) = e∞.

If ∆ < 1, then the solid generated is superheated withu > 0. If ∆ is too far from 1, then constant-velocity waves
are impossible; near∆ = 1, the wave speeds have a rich and interesting structure [16,21,22].

However, as noted independently by Almgren and Almgren [1] in one-dimensional simulations, and by Zukerman
et al. [34] for two-dimensional simulations, such a smooth front is commonlynotwhat is observed in simulations.
Fig. 2 shows a time-dependent simulation which attempts to model a freezing interface with∆ = 0.7. The expected
wave front joining liquid withφ = −1 to solid withφ = 1 has decomposed into a pair of fronts. The first front joins
the liquid state to a spatially uniform state in which the phase and temperature have intermediate valuesφ = φm

andu = um. This intermediate state is then unstable to an oscillatory perturbation, whose envelope follows the first
wave front. We shall describe reasons for this situation to exist.

To develop some intuition, we will first consider two simplified cases: first, the ODE describing the dynamics
of spatially uniform states, obtained by suppressing spatial dependence on the right-hand sides of (5) and (6); and
second, the single ODE obtained by settingD = 0 in (6).

2.1. Ordinary differential equation

Suppressing spatial derivatives in (5) and (6) gives the single ODE

φt = − ∂

∂φ
s(φ, e),

in whiche rather thanu is held constant asφ varies. Stable stationary points correspond to local minima ofs(φ, e)

overφ for a given value ofe. These minima are illustrated in Fig. 3.
For largeλ, an internal local minimum ofs can exist. We make the following definition.
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Fig. 3. Plots ofs(φ, e; λ) for two different values ofe. Lines show local minima ofs overφ; light lines are local maxima. Graph (a) has∆ = 0.65
ande = −0.15; the intermediate minimum has, from the beginning of its existence, alower value ofs than the liquid state, so thatλs = λm.
Graph (b) has∆ = 0.35 ande = 0.15; the intermediate minimum initially has alarger value ofs than the liquid state, soλs > λm.

Definition 1. The first critical parameter valueλm(e) is the smallest value ofλ above whichs(φ, e; λ) has a
local minimum in the intervalφ ∈ (−1, 1). Forλ ≥ λm(e), the intermediate phaseφm(λ, e) is the corresponding
minimum location.

The dynamics of the ODE are clear: the stateφ flows smoothly downwards to one of its wells. Forλ ≤ λm there
are two such wells atφ = ±1; for λ > λm there is an additional third well atφm with −1 < φm < 1. If spatially
inhomogeneous initial dataφ0(x) is given (we imaginee0(x) ≡ e0 is constant), then the solutionφ(x, t) will tend
to a steady state in whichφ is piecewise constant at different local wells corresponding to the different basins of
attraction of the initial data.

2.2. Scalar equation withD = 0

If we setD = 0, then the dynamics ofφ(x, t) are given by the single scalar equation

φt = − ∂

∂φ
s(φ, e) + φxx, (7)
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where we suppose thate(x) ≡ e0 is constant. This equation is the well-known Allen–Cahn equation in materials
science, and arises in many other contexts.

Spatially uniform states which were stable under the ODE dynamics —φ = ±1 andφ = φm if λ ≥ λm — are
again stable under this PDE dynamics. If the initial data contains different regions in whichφ is in different stable
wells, then fronts will develop in whichφ moves from one well to a deeper well, and the speed of fronts roughly
scales as the difference in depth of the wells [25].

Because the overall negative entropyS[φ, e] is nonincreasing, steady state traveling waves which generate the
intermediate state, as illustrated in Fig. 2 can exist only if the intermediate state has a lower value ofs than the
initial liquid state. We thus define the following definition.

Definition 2. The second critical parameter valueλs(e) is the smallest value ofλ above which the internal minimum
φm exists, ands(φm, e; λ) ≤ s(−1, e∞; λ). (This may be the same value asλm defined above.)

For small values ofe, corresponding to high undercoolings, the intermediate state can satisfy this condition from
the beginning of its existence atλ = λm. In this case we takeλs = λm. Note that the local behavior ofs nearφm at
λ = λs is different depending on whetherλs = λm or λs > λm.

With D = 0, the intermediate stateφm is stable under the dynamics (7); thus increasing amounts of intermediate
state are generated as time evolves. The effect of introducingD > 0 is todestabilizethe intermediate state, yielding
the oscillating trailing front in Fig. 2. In previous studies of dual front dynamics, the presence of the dual front
structure depended on the relative speeds of the leading and the trailing fronts. The purpose of this paper is to
analyze the effects ofD 6= 0 and especially to carry out an asymptotic analysis forD near zero, and argue that the
speed ordering does not determine the presence or absence of dual fronts.

As a final note, let us point out that both critical values ofλ necessarily exist for any continuous constitutive
functionsg(φ) andp(φ) as long as 0< ∆ < 1 so that|e| < 1

2. To see this, note that under this condition and for
continuousp(φ) with p(±1) = ±1, the quantity(e + 1

2p(φ))2 necessarily has at least one zero for−1 < φ < 1,
and takes finite values at the endpoints that are at least as large as(1

2 − |e|)2. A sufficient condition fors(φ, e) to
have an internal minimum at whichs is smaller than atφ = −1 is then that12λ(1

2 − |e|)2 ≥ max|φ|≤1g(φ), which
is always true whenλ is large enough. Thus, the behavior shown in Fig. 3 is generic.

3. Propagation velocities

We will now consider what happens in general withD 6= 0. What distinguishes our dual front scenario from others
which have been studied is that the two front speeds are determined by entirely different mechanisms. The leading
front’s speed is determined by solving a nonlinear eigenvalue problem, whereas the oscillating front’s advancement
will be given by the linear behavior around the intermediate state. Here, we describe methods which allow us to
compute the front velocities.

3.1. The oscillating front

The growth ratesω(k) of perturbations with structure exp(ikx + ωt) to the intermediate state(φm, um) are
determined as roots of the dispersion relation

ω2 + [(D + 1)k2 + σ ]ω + Dk2(k2 − ρ) = 0, (8)

where

σ = −
(

∂f

∂φ

∣∣∣∣
u

+ 1

2
p′(φ)

∂f

∂u

∣∣∣∣
φ

)
= ∂2s

∂φ2

∣∣∣∣
e

, ρ = ∂f

∂φ

∣∣∣∣
u

= −σ + 1

4
λp′(φ)2,
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evaluated atφ = φm, u = um. Notice thatσ ≥ 0 for all λ ≥ λm, andσ ↘ 0 asλ ↘ λm. Solving forω, we find that
there is an unstable band of wavenumbers 0< k <

√
ρ. We will assume thatρ > 0; otherwise the intermediate

state would be stable, and no oscillatory front would exist. Clearly,ρ > 0 nearλ = λm as long asp′(φ) 6= 0, and
it is easy to check thatρ > 0 for the specific polynomial model given in Section 2.

The speed of the advancing instability may be sought using the method of marginal stability [10,30,31]. The
velocityV of any perturbation is related to the growth rate and wavenumber by

V = Reω

Im k
.

The selected velocity and wavenumber must satisfy

dV

d Rek
= 1

Im k

d Reω

d Rek
= 0, (9)

Reω

Im k
= d Reω

d Imk
. (10)

We have foundV by numerically solving (9) and (10) for the marginally stable wavenumberk = k∗. Zukerman
et al. [34] also computed the marginal stability velocities and found them in accord with time-dependent simulations.
As a result, we have reason to believe the validity of this method.

3.2. The leading front

If we look for constant velocity traveling wave solutions of the formφ = φ(x − Vt), u = u(x − Vt), we obtain
the problem

φ′′ + V φ′ + f (φ, u) = 0, (11)

Du′ + Vu− 1
2Vp(φ) − Ve∞ = 0, (12)

u(+∞) = −∆, u(−∞) = um, φ(+∞) = −1, φ(−∞) = φm, (13)

wheree∞ = −∆ + 1
2 is the common value of the internal energy in the stationary states connected by the front. A

detailed analysis has been conducted for this problem in [16]. In particular, it was shown that for solutions to exist,
λ must necessarily be larger thanλs , as we have assumed. An asymptotic solution will be carried out later, but for
now, we simply describe a method of solving this problem numerically.

As shown in [1], this system has forV > 0, a one-dimensional unstable manifold passing through the intermediate
state. This forms the basis for a shooting method, since a trajectory on this manifold necessarily satisfies the left
hand boundary conditions. To ensure the other boundary condition is satisfied as the trajectory is evolved forward,
the parameterV must be adjusted. This was done numerically, and it was found that sometimes exactly two solutions
existed, and sometimes none. The results are discussed in the next section.

3.3. Numerical results

Fig. 4 shows a typical plot of velocities as a function ofλ for ∆ = 0.7, e = −0.2, and compares them to the
marginal stability velocities of the oscillatory front. No leading front solutions exist at all below a certain value of
λ; this is typical in all parameter ranges. At a certain point, a saddle-node bifurcation gives rise to two branches of
leading front solutions. We have compared these solutions to simulations of the full equations, and it appears that
the fast solution branch is the dynamically stable one.
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Fig. 4. Velocities of the oscillating front (dashed) and the two branches of the precursor front velocity (solid), for∆ = 0.7 andD = 4. The
picture is qualitatively the same for other parameters.

For general parameter values, we have found that the leading front is always faster than the oscillating front.
Although this ordering of speeds is presently an open question from a rigorous standpoint, we will show that this
behavior is generic in the limit of smallD.

4. The small-DDD limit

Recall from Section 1 that a physically interesting limit isD → 0, corresponding to fast phase kinetics. We shall
study the velocities of the leading and oscillatory fronts by means of asymptotic expansions nearD = 0 and discuss
the results.

4.1. Oscillating front velocity

For small values ofD, the positive growth rateω+ solving the dispersion relation (8) has the form

ω+ = Dk2 ρ − k2

k2 + σ
+O(D2). (14)

The leading order solution to (9) and (10),k∗, is therefore independent ofD. As a result, the marginal stability
velocity will be of the form

V = DV0(ρ, σ ) +O(D2). (15)

An interesting special case is whereσ is small, e.g., whenλ is close toλs . Neglectingσ in (14), we can solve (9)
and (10) exactly, giving the marginal stability velocity

V = 2D
√

ρ. (16)

This is the well-known result of Kolmogorov et al. [2,18] for one component systems. Since the growth rateω+ is
a decreasing function ofσ , (16) should in general provide an upper bound on the velocity whenD is small. Note
thatρ does not tend to zero asλ → λs . The result thatV ∼ O(D) asD → 0 depends only on the local structure
of s(φ, e) nearφ = φm, not on the relative values ofs(φm) ands(−1).
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4.2. Leading front velocity

The asymptotic analysis for the problem (11)–(13) will consider two separate cases
1. s(φm) not nears(−1). This case always applies to the upper branch of solutions (see Fig. 4) far away from the

bifurcation point. It also applies near the bifurcation point, as long asλs = λm (Fig. 3(a)). In this case,V has a
finite limit asD → 0.

2. s(φm) close tos(−1). This case applies near the bifurcation pointλ = λs , whenλs > λm. In this case, we make
a special asymptotic expansion inD andλ simultaneously to show thatV ∼ O(D1/2).

In both cases, the speed of the precursor front is larger than the speed of the oscillatory front for smallD.
In Case 1, we assume regular expansions of the form

V ∼ V0 + DV1 + · · · , φ ∼ φ0 + Dφ1 + · · · , u ∼ u0 + Du1 + · · · as D → 0.

The leading order solution foru then satisfies

u0 − 1
2p(φ0) − e∞ = 0, (17)

and thereforeφ0 is the solution to

(φ0)
′′ + V0(φ0)

′ − sφ(φ0, e∞) = 0. (18)

Solutions(V0, φ0) to Eq. (18) exist and are unique up to translation (see, e.g., [13]). Multiplying byφ′
0 and integrating

gives

V0

∫ ∞

−∞
(φ′

0)
2 dx = s(−1, e∞) − s(φm, e∞).

The left-hand side of this expression is positive andO(1) as long asλ � λs , and an upper bound on the integral of
(φ′

0)
2 can be provided (see [16]). Thus,V0 is bounded away from zero and the total velocity satisfies

V = V0 +O(D). (19)

If λs > λm, thens(−1, e∞)−s(φm, e∞) is small whenλ is nearλs . In this case,V0 would not beO(1), and therefore
the assumed form of the above asymptotic expansion is incorrect. We rectify this by introducing a different scaling
for Case 2.

Forλ nearλs , we introduce the rescaled variable

Λ = D−1/2(λ − λs)

which is assumed to beO(1). We look for solutions with the expansions

V ∼ D1/2V1 + DV2 + · · · , φ ∼ φ0 + D1/2φ1 + Dφ2 + · · · ,

u ∼ u0 + D1/2u1 + Du2 + · · · as D → 0.

At lowest order we again obtain (17), but nowφ0 solves

(φ0)
′′ − sφ(φ0, e∞; λs) = 0. (20)

This is just the steady state version of (18), and a unique solution exists because atλ = λs, s has wells of equal
depths. At next order in the expansion, we obtain the inhomogeneous linear problem(

d2

dx2
+ fφ

)
φ1 + fuu1 = −V1φ

′
0 + 1

2
Λu0p

′(φ0), −1

2
p′(φ0)φ1 + u1 = − 1

V1
u′

0,
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where derivatives off are computed at the unperturbed quantitiesφ0, u0, λs . Such a problem only has solutions if
the right-hand side is orthogonal to solutions of the homogeneous adjoint problem. In our case, it is easy to see that
the vector [φ′

0, u
′
0] is a null vector of the adjoint operator. We obtain a solvability condition

−V1I + ΛJ − λs

V1
K = 0, (21)

where

I =
∫ ∞

−∞
(φ′

0)
2 dx, K =

∫ ∞

−∞
(u′

0)
2 dx

and

J = 1

2

∫ ∞

−∞
u0p(φ0)

′ dx = 1

2
(∆2 − u2

m),

where we have used the fact1
2p(φ0)

′ = u′
0. The quadratic equation (21) has two roots

V ±
1 = ΛJ ±

√
Λ2J 2 − 4λs IK

2I
(22)

as long as

Λ ≥
√

λs IK

J
.

This means that the velocityV +
1 corresponding to the stable branch of leading front solutions has the lower bound

V +
1 ≥

√
λsK

4I
.

Provided thatλ − λs = O(D1/2), the velocity will satisfy

V = D1/2V1 +O(D), (23)

completing our asymptotic analysis.

Fig. 5. Approximate velocities obtained from the solvability condition (dashed) and the exact velocities (solid) obtained by numerical solution.
The parameters wereD = 0.01 and∆ = 0.5.
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4.3. Comparison of the velocities

We now discuss the results of the previous analysis. Eqs. (15), (19) and (23) indicate that, at least whenD

is sufficiently small, the oscillatory front must be slower than the leading front. Note that whenD = O(1),
there is no prediction that the oscillatory front will become faster since the asymptotic expansions may be
invalid.

The analysis also provides a tractable way of obtaining quantitative information about front speeds. In particular,
the bifurcation of the leading front velocity was explained by the quadratic form of the solvability condition. This
result was compared to numerical computations (see Fig. 5) and has reasonably good agreement.

5. Discussion

Up to this point, we have only talked about the mathematical aspects of the dual front phenomenon. In this section,
we discuss viewpoints concerning its physical meaning.

One interpretation of the intermediate state is a metastable solid phase, such as those described in models of
eutectic systems [29,33] which is destabilized, perhaps quite slowly, by diffusion of a conserved quantity (usu-
ally some impurity in the alloy). But although the intermediate state is more entropically favorable than the
highly undercooled liquid state, the final result is an even more favorable spatially segregated combination of
liquid and solid. Numerical simulations indicate that this combination gradually coarsens, much like Cahn–Hilliard
systems [7].

Another viewpoint is to regardφ as a coarse-grained local average of states as mean-field theory does in statistical
mechanics. The intermediate state can then be interpreted as a fine mixture of the two phases (in the language of
Fife and Gill [14], this is a “mushy zone”) which for a given energy level has entropy greater that the liquid. This
mixture does not persist, though, by the following mechanism: large wavelength perturbations in the phase mixture
lead to regions of higher solid or liquid content. But sinceD 6= 0, latent heat is carried away fast enough so that
regions with greater solid (or liquid) content do not remelt (or refreeze).

Numerical experiments indicate that the steady leading front exists only when the thermal diffusion lengthDu/V

is comparable to the interface width. This is consistent with the asymptotic scaling given in Section 4 (Case 2),
since

Du

V
∝ ε2D

V
= ε2O(D1/2) = ε2O(ε−1) = O(ε).

The dual front phenomenon should therefore occur primarily during rapid phase changes. Some examples of phase
field models which describe rapid solidification include hypercooled solidification [4] and solute trapping [3]. As
in our system, the two field variables in these models vary on comparable scales.

In summary, we have explained why dual front behavior may occur in a generic reaction–diffusion system, and
have given conditions for its emergence. Numerical and analytical evidence supports the conclusion that the leading
front is always faster, and consequentially the appearance of dual front behavior is governed by the existence of this
front.

The question of existence in the traveling wave problem is not as straightforward as it is for single component
models, or for their extensions to multicomponent models in which all variables are nonconserved. We remark that
numerical evidence suggests that existence becomes more likely for either large undercooling or small diffusion
ratio D. This is similar to the nonexistence of standard solid–liquid interfaces in the phase field model near unit
undercooling [21,22].
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