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Rapid solidification fronts are studied using a phase field model. Unlike slow moving solutions

which approximate the Mullins–Sekerka free boundary problem, different limiting behaviour

is obtained for rapidly moving fronts. A time-dependent analysis is carried out for various

cases and the leading order behaviour of solidification front solutions is derived to be one

of several travelling wave problems. An analysis of these problems is conducted, leading to

expressions for front speeds in certain limits. The dynamics leading to these travelling wave

solutions is derived, and conclusions about stability are drawn. Finally, a discussion is made

of the relationship to other solidification models.

1 Introduction

Rapid solidification processes have become important in many modern manufacturing

applications [17, 20, 19]. Modeling of these events is complicated by the fact that at high

velocities, solidification fronts may be far from thermodynamic equilibrium. This leads

to growth modes different from those of slow solidification processes, and results in the

formation of different microstructures.

Many studies of solidification have been done in the context of free boundary problems,

which assume the solid-liquid interface is infinitesimally narrow (see [21] for a review).

More recently, phase field models have become a popular way of describing the dynamics

of solidification [13, 22]. They introduce a continuous order parameter φ which takes on

(approximately) the values

φ =

{
1 solid

−1 liquid

corresponding to the two material phases. The phase interface is described implicitly by

the zero level set

Γ = {φ(x)|φ = 0}.
An additional field u represents temperature and is dynamically coupled to φ.

Phase field models have been derived from thermodynamic considerations and incor-

porate many observed features of solidification processes including undercooling, surface

tension and kinetic effects. Several authors [16, 26, 32] have suggested a phase field



40 K. Glasner

formulation based upon a free energy functional of the form

F(φ, u) =

∫
aF(φ, u) +

b

2
|∇φ|2. (1.1)

The first term is the classical free energy density, where a is the dimensional magnitude of

this energy, and F(φ, u) is a nondimensional, O(1) quantity. The second term accounts for

energy due to gradients of the order parameter; the constant b sets the scale of this term.

We will choose a scale for u so that the coexistence temperature of the two phases is zero.

Letting cp, L be the heat capacity and latent heat respectively, we may nondimensionalize

u by setting

u′ = cpu/L.

We will drop the prime notation from here on.

The internal energy density emay also be scaled by latent heat, and so in nondimensional

form is related to the temperature by

e = u− 1

2
p(φ),

where p is some increasing function for which p(±1) = ±1 and p′(±1) = 0. It will not be

essential to specify the exact forms of the constitutive functions described here. It will be

convenient at times to regard F as a function of e instead; we will write either F(φ, e) or

F(φ, u), where the context will remove any ambiguity.

There are two fundamental requirements that F must satisfy. The first is that F(φ, u)

has two wells at φ = ±1 for each fixed u, ensuring that at constant temperature, the

liquid and solid states are stable to infinitesimal perturbations. The second requirement

is that for fixed φ, F(φ, u) is convex in u, which is necessary for well-posedness of the

diffusion equation. We will concentrate on the simplest model which satisfies these two

requirements, namely

F(φ, u) = g(φ) +
λ

2
u2,

where g is a double well potential with equal well depths at ±1. The positive coupling

parameter λ is the relative magnitude of bulk free energy in comparison to surface energy.

The free energy may be restated in terms of the more familiar quantities of surface

energy and interface width. The equilibrium one dimensional interface profile will solve

the Euler–Lagrange equation for (1.1) with u ≡ 0:

bφxx − ag′(φ) = 0.

This may be integrated to give

φx =

√
2ag(φ)

b

which motivates the choice ε =
√

b
a

as the interface width. The surface energy density σ

is the free energy if this interface, which may be computed to give

σ =
√
ab

∫ 1

−1

√
2g(φ) dφ.

We suppose that the constant a was defined so that the integral in this expression is unity,
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so that σ =
√
ab. In terms of these new quantities, the free energy is

F(φ, u) = σ

∫
1

ε
F(φ, u) +

ε

2
|∇φ|2 dx. (1.2)

The dynamics resulting from (1.2) are generated by allowing the free energy to relax,

while conserving internal energy [26, 32]. The internal energy satisfies the conservation

law

et + ∇ · j = 0

where j is the heat flux. The time derivative of (1.2) is

dF
dt

=
σ

ε

∫ [
−ε2∆φ+ g′(φ) +

λ

2

(
e+

1

2
p(φ)

)
p′(φ)

]
φt +

[
e+

1

2
p(φ)

]
et dx. (1.3)

To ensure that this quantity is negative, we choose

φt = Dφ

[
−ε2∆φ+ g′(φ) +

λ

2

(
e+

1

2
p(φ)

)
p′(φ)

]
,

j = −DT∇u,
where Dφ,DT are phase and thermal mobilities, respectively. The result is the pair of

equations

τ
∂φ

∂t
= ε2∆φ− g′(φ)− λ

2
up′(φ) ≡ ε2∆φ+ f(φ, u) (1.4)

∂e

∂t
= DT∆u (1.5)

where τ = D−1
φ is a relaxation timescale and DT is thermal diffusion.

It is important to point out that phase field models for isothermal alloy growth have

the same mathematical structure as the one we describe. The analogy between physical

quantities is

temperature↔ chemical potential

internal energy↔ solute concentration

A discussion of this analogy is given in Lowen et al. [24]. We shall occasionally refer to

this physical problem as well.

The most studied limit of the phase field model for pure solidification is the Mullins–

Sekerka free boundary problem (MS):

ut = DT∆u x ^ Γ (1.6)

Vn = DT (∇us − ∇ul) · n on Γ (1.7)

u = −d0κ− βVn on Γ . (1.8)

Here Vn is the normal velocity of the interface Γ , κ is the geometric curvature of

the interface and β is a ‘kinetic’ undercooling parameter. The limit of (1.4)–(1.5) as

ε → 0, τ ∼ ε2 was investigated first by Caginalp & Fife [8], and later rigorously by

Soner [29]. The leading order behaviour was shown to be the above interface motion, and

relationships between diffuse and sharp interface parameters were given. Karma & Rappel

[18] considered a different limit, one where τ ∼ ε3 and λ ∼ ε. In this limit they showed
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that the kinetic coefficient β could be determined arbitrarily. Other limits of the phase

field models have been identified by Caginalp [6] and proved by Caginalp & Chen [7].

A crucial aspect of the asymptotics described above was a separation of scales between

the interface width ε and the diffusion length DT/V , where V is a characteristic velocity

of the interface. This assumes a timescale that is O(1), which is not necessarily valid for

large undercoolings. In this case, the interface temperature may not be well defined, so a

different free boundary problem must be sought.

Recently, Bates et al. [4, 5] developed a phase field model describing hypercooling,

when the far field temperature −∆ (the negative undercooling) is less than −1. In their

paper, they consider dynamics on a timescale of order O(ε), and the interface velocity is

determined solely by the travelling wave problem associated with equations (1.4)–(1.5).

A number of studies of this travelling wave problem have been conducted. Caginalp &

Nishiura [9] prove existence when the coupling between the two variables is weak. In a

more recent study, Bates et al. [4] established the existence of waves under the hypothesis

of hypercooling, when ∆ > 1. Schofield & Oxtoby [28], as well as Löwen et al. [23, 24],

studied the non-hypercooled situation; they obtain solutions for very specific forms of

equations (1.4)–(1.5).

This paper extends the results described above in the following ways:

• A time-dependent analysis of the full equations is carried out, which examines a number

of different scaling regimes for both parameters and time, and deduces the resulting

leading order behaviour.

• We show by thermodynamic considerations that hypercooling is not necessary to obtain

steadily propagating (travelling wave) fronts. In particular, steady solidification fronts

may exist when ∆ is larger than some critical value ∆∗ which depends on the parameters

of the model.

• As shown elsewhere [28, 23, 24] for very specific models, the critical value ∆∗ is less

than 1 when the ratio λ/D is larger than some constant, but is equal to one otherwise.

In our study, an asymptotic treatment shows that this is in general the case.

• Quantitative information about front speeds is derived in regimes where the diffusion

length is both small and large.

• The approach to travelling wave solutions of the inner problems is systematically ana-

lysed by considering motion on very fast time scales. In particular, the one-dimensional

stability properties of some solutions are derived.

The layout of the paper is as follows. A formal analysis of the time dependent equations

is performed in § 2, leading to several different travelling wave problems. The resulting

travelling wave problems are analysed in more detail in § 3–§ 4. In § 5, the transient

dynamics of the model is explored, showing how travelling wave solutions are approached

in the full, time dependent model. A discussion of the relationship between the phase field

model and other solidification models is presented in § 6.
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2 Sharp interface limits

We will analyse the time dependent behaviour of the model in the limit of small interface

width ε. Rather than further non-dimensionalizing the evolution equations, we leave them

as they are so that the results of the analysis are not obscured.

In the spirit of Caginalp [6], we shall consider various scales of model parameters, and

determine the resulting leading order behaviour. For each combination of parameters,

we select a one or more timescales on which to look for solutions. Of course, some

combinations of parameters and timescales lead either to scalings which have been

encountered previously, or to inconsistencies in the asymptotics. We shall therefore mostly

focus only on situations which give new and sensible results.

The following combinations will be considered:

τ ∼ ε, ε2, ε3

DT ∼ 1, ε.

The scale DT = O(ε) is particularly important in the case of alloy growth, since impurity

mobility is usually small near the phase interface [33]. The case λ = O(ε) or smaller, while

of interest in the slow time scale asymptotics, leads to nothing new for rapid dynamics,

so we shall always have λ = O(1).

A matched asymptotic approach is used (e.g. see Caginalp & Fife [8]), and we work in

two space dimensions. For the inner solution (φ, u) corresponding to the interfacial layer,

an orthogonal curvilinear coordinate system (r, s) is used, where r is the distance from the

interface Γ = {x|φ(x) = 0} and s is the distance along the interface. We will assume that

r < 0 corresponds to φ > 0, i.e. solid. The normal coordinate r is rescaled using z = ε−1r

reflecting the fact that φ varies rapidly near the interface. In this new coordinate system,

the time derivative becomes
∂

∂t
+ ε−1 dr

dt

∂

∂z
+
ds

dt

∂

∂s
,

noting that that dr/dt is to leading order just the normal interface velocity Vn. We shall

also rescale time, in such a way as to make Vn an O(1) quantity. The Laplacian is replaced

by

ε−2 ∂
2

∂z2
+ ε−1∆r

∂

∂z
+ |∇s|2 ∂

2

∂s2
+ ∆s

∂

∂s
.

It will be assumed throughout that the interface is smooth, and not highly curved, so that

∆r, |∇s|2 and ∆s are all O(1). All quantities are then expanded in an asymptotic series in

powers of ε, and solutions to each order are sought.

To leading order, the outer solution for φ, which we will denote by the capitalized

version Φ, satisfies

Φ = +1 or Φ = −1 (2.1)

in each outer region. In what follows, we will consider either DT = O(ε) or a timescale

t = O(ε), with one noted exception (case V below). Therefore, the leading order temperature

in the outer expansion will be constant, determined by the initial data. Notice that this is

in sharp contrast to the Mullins-Sekerka limit, where the evolving temperature field away

from the interface will affect the interface’s dynamics.

The outer solutions are then matched to the inner ones (e.g. see Caginalp & Fife [8])
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by the leading order conditions

Φ(0+) = lim
z→∞φ(z), Φ(0−) = lim

z→−∞φ(z)

U(0+) = lim
z→∞ u(z), U(0−) = lim

z→−∞ u(z).

Although we have been careful about writing the details of the coordinate transforma-

tions up to this point, the analysis which follows will only consider the model’s leading

order behaviour, which generally will not involve curvature effects at leading order. Again,

this is different from the Mullins–Sekerka limit, where curvature effects are important,

and crucial to obtain a well-posed free boundary problem [25].

Case I: τ = O(ε2), DT = O(1)

Let τ = αε2, where α is assumed to be O(1). With a timescale t = O(1), the Fife–Caginalp

asymptotics are recovered, and the interface motion is given by the MS problem. When

the motion becomes fast, however, we must rescale time so that each of the terms in the

expansion remains O(1).

Bates et al. [5] introduced the time scale defined by the new variable

T = ε−1t.

For completeness, we summarize their analysis. To lowest order for the inner expansion,

one obtains the problem

φzz + αVnφz + f(φ, u) = 0, (2.2)

DTuz + Vn

(
u− 1

2
p(φ)− e∞

)
= 0, (2.3)

where e∞ is a constant of integration determined by matching to the outer solution as

z →∞:

e∞ = uL +
1

2
,

where uL is the temperature just on the liquid side of the interface, which we shall call

the ‘local’ undercooling and denote by −∆. Assuming a solution exists, we may also use

the matching condition for z → −∞ to obtain

uS = e∞ +
1

2
= uL + 1, (2.4)

where uS is the temperature just on the solid side of the interface. The boundary conditions

for φ are also obtained by the matching conditions:

φ(±∞) = ∓1. (2.5)

We refer to the problem (2.2)–(2.5) as the phase-field travelling wave problem (PF); it will

be discussed extensively in § 3.

The interface motion is therefore described by a free boundary problem where the

temperature field is discontinuous across the interface, changing by exactly one unit, and

the leading order interface motion is given by a simple law of the form

Vn = V (uL;DT , λ). (2.6)

The function V (uL) is given by finding the (stable) velocity to the PF problem. It will
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happen that sometimes no solution will exist. This simply means that the initial assumption

about motion on the fast timescale was incorrect, and the interfacial motion is therefore

described by slow timescale asymptotics.

Case II: τ = O(ε2), DT = O(ε)

We now consider the situation of small diffusivity, setting DT = εD̃. With a timescale now

O(1) again, the leading order inner solution satisfies

φzz + f(φ, u) = 0, (2.7)

D̃u′ + Vn

(
u− 1

2
p(φ)− e∞

)
= 0, (2.8)

which is like the first travelling wave problem, but the Vφ′ term has been suppressed

in the first equation. This problem has the same boundary conditions as before. We call

this the fast relaxation travelling-wave problem (FR problem), and it will be seen that its

solutions are unstable.

Now with the fast timescale again, we obtain the leading order problem

φzz + αVnφz + f(φ, u) = 0, (2.9)

u+
1

2
p(φ) = e∞, (2.10)

where the constant of integration e∞ has the same value as before. Upon substitution of

u into the first equation, we obtain

φzz + αVnφz − F ′(φ; e∞) = 0, (2.11)

where F is the bulk part of the free energy, evaluated at constant internal energy e∞.

This is the well known standard Bistable Travelling-Wave (BTW) problem. The solution

to this problem is both unique and stable. We will discuss this problem below as well.

Case III: τ = O(ε3), DT = O(1)

We now consider the more rapid relaxation rate τ = αε3 which has been has been

suggested in recent versions of the pure solidification model [2, 18]. This case is actually

the same as case II, except that time has been rescaled by a factor of ε−1. Therefore,

on the timescale T = ε−2t, we obtain the BTW problem (2.11), and on the timescale

T = ε−1t we obtain the FR problem.

Case IV: τ = O(ε3), DT = O(ε)

This case is similar to Case III, except that the timescales are a factor of ε slower. On

the T = t timescale, the FR problem is obtained, and on the T = ε−1t scale, the BTW

problem is obtained.

Case V: τ = O(ε), DT = O(1)

Finally, we consider the case where τ = αε. On timescales faster than T = t, we find the

leading order velocity V = 0, which means that motion must be O(1) or less. This violates

the intent of this paper, but we include this case because it yields leading order behaviour

similar to that above.

For DT = O(1) and motion on the T = t timescale, the outer temperature solution is

no longer a constant, but satisfies a simple diffusion equation in each outer regions:

ut = DT∆u.
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For the inner solution, we get the leading order problem

φzz + αVnφz + f(φ, u) = 0, (2.12)

and u is a constant, determined by matching conditions

u = uL = uS ≡ uI .
This is a different bistable problem than the one above, which we shall call the alternative

Bistable (AB) travelling wave problem.

Case VI: τ = O(ε), DT = O(ε)

This case is really identical to Case I, but time has been rescaled by a factor of ε−1.

Therefore, now on the (original, slow) T = t timescale, we obtain the PF problem. For

small undercoolings, this problem will not have solutions; we would therefore look for

solutions on the (very) slow T = εt timescale, which leads to the original MS problem.

3 Solutions to the phase-field travelling wave problem

Of the travelling wave problems derived above, the PF system has the richest behaviour.

We will rescale by setting V := αVn and D = αDT in equations (2.2)–(2.3), giving

φzz + Vφz + f(φ, u) = 0, (3.1)

Duz + Vu− 1

2
Vp(φ)− Ve∞ = 0. (3.2)

with the boundary conditions

φ(−∞) = 1, φ(+∞) = −1, (3.3)

u(+∞) = −∆ (= uL). (3.4)

For ∆ > 1, existence, and in restricted cases uniqueness, was obtained by Bates et al. [4].

A rigorous study of this problem has also been conducted by the present author [14],

who considers ∆ < 1 as well.

By the gradient flow construction of the model, there are some elementary conditions

which travelling wave solutions must satisfy. In one dimensional front propagation, one

steady state is being replaced with another. Intuitively, this implies that the free energy of

the final state must be smaller than that of the initial state, and internal energy must be

the same in both states. Formally, this is

Proposition 1 Any solution to (3.1)–(3.2) for which

lim
x→±∞φ, u exists

must satisfy (
u− 1

2
p(φ)

)∣∣∣∣z=∞
z=−∞

= 0 (3.5)

and

[F(φ, e∞)]z=∞z=−∞ = V

∫ ∞
−∞

(φz)
2 dz +

Dλ

V

∫ ∞
−∞

(uz)
2 dz (3.6)
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The first property is just conservation of internal energy, which simply implies that the

the supercooled liquid is warmed by exactly one unit when it changes into solid. The

second property (3.6) is just a computation of free energy dissipated as the front moves.

For a front to have positive velocity, a necessary condition for existence is that

[F(φ, e∞)]z=∞z=−∞ = λ[u(∞)2 − u(−∞)2] > 0

which using (3.4) and (3.5) means one must at least have ∆ > 1/2. For fixed values of

D, λ, there will be some critical value, ∆∗, a value of the undercooling below which no

solutions will exist. It will always be the case that

1

2
< ∆∗ 6 1.

We note that equation (3.6) has analogues for the other travelling wave problems as well.

There are two different limiting cases for which the problem is reasonably tractable:

one where the diffusion length D/V is small, the other where it is large. We will carry out

an asymptotic analysis in these limits.

3.1 The limit of small diffusion length

Here we find a solution to (3.1)–(3.2) perturbatively when the diffusion length D/V is

small in comparison to unity. By examining (3.6), it follows that V must remain finite for

this to happen, since the integral of (u′)2 remains bounded. Then for small values of D

we look for solutions with the asymptotic expansions

φ ∼ φ0 + D1/2φ1 + Dφ2 + · · · , (3.7)

u ∼ u0 + D1/2u1 + Du2 + · · · , (3.8)

V ∼ V0 + D1/2V1 + DV2 + · · · . (3.9)

Furthermore, we choose a new scale for the undercooling by defining

δ ≡ D− 1
2

(
∆− 1

2

)
,

which is assumed O(1). These choices of scalings are made so that the three terms in (3.6)

balance in the limit D → 0. Inserting these into (3.1) - (3.2), we obtain to lowest order in

D that u0 is “slaved” to φ0:

u0 − 1

2
p(φ0) = 0, (3.10)

and φ0 is the solution of

(φ0)zz + V0φz + G′(φ0) = 0, (3.11)

where

G(φ) = g(φ) +
λ

2

(
1

2
p(φ)

)2

.

Multiplying equation (3.11) by φz and integrating gives the solvability condition V0 = 0.

The solution of (3.11) is then some monotone decreasing function which represents the

phase profile.
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We proceed to the next order in D, which gives the linear system(
d2

dz2
+ fφ

)
φ1 + fu u1 = −V1φ

′
0,

−1

2
p′(φ0)φ1 + u1 = − u

′
0

V1
+ δ,

where derivatives of f are computed at φ0, u0. Such a problem only has solutions if the

right-hand side is orthogonal to solutions of the homogeneous adjoint problem. In our

case, it is easy to see that the vector [(φ0)z , λ(u0)z] is a null vector of the adjoint operator.

We obtain the solvability condition

−V1I + λδ − λ

V1
J = 0, (3.12)

where

I =

∫ ∞
−∞

(φ0)2
z dz, J =

∫ ∞
−∞

(u0)2
z dz. (3.13)

The quadratic equation (3.12) has the two real positive roots

V1 =
λδ ±√(λδ)2 − 4λIJ

2I
, (3.14)

as long as

∆ >
1

2
+ 2

(
IJD

λ

)1/2

. (3.15)

The interpretation of (3.14) is that travelling wave solutions are possible for undercool-

ing somewhat larger than 1/2 provided D is small. Furthermore, there are two solution

branches which emanate from a saddle-node type bifurcation. Equation (3.15) gives a

perturbative estimate for the critical value ∆∗.
A simple argument suggests that the faster one is the dynamically preferred, thus

stable, solution. Suppose that we are just past the existence point, so that the fast and

slow solutions are nearly identical. For any travelling wave solution, one may compute

the time derivative of the free energy to be

dF
dt

= −Vλ
(
∆− 1

2

)
.

Now consider any initial condition which is near both solutions. Since the dynamics are a

gradient flow for F, the initial condition will evolve so that dF/dt is as large as possible.

As a consequence, it is unlikely that the time evolving solution would tend toward the

slow front. It is, however, unclear if the fast branch should be globally attracting. In

fact, for ∆ < 1, hysteresis is quite possible; depending on the initial data, either the fast,

steady front will be approached, or the front may slow to the point where the slower scale

asymptotics apply instead.

3.2 The limit of large diffusion length

We next examine the case when the diffusion length is large. In contrast to the small-

diffusion length situation, we may take D to be fixed and assume that V is getting small,
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but not as fast as ε is getting small, so that leading order time-dependent asymptotics still

yield the PF problem. Taking V → 0 in expression (3.6), after a careful evaluation of the

integral we see that

[F(φ, e∞)]z=∞z=−∞ =
λ

2

which means that ∆ = 1. In other words, to have small velocities we must be near unit

undercooling.

We define a new small quantity

δ = ∆− 1

and expand φ, u, V in powers of δ. Since the temperature field varies on a spatial scale of

δ−1, a matched asymptotic expansion is necessary. Far in front of the interface (z >> 1),

we use the rescaled coordinate ζ = δz, and denote solutions of various orders using the

capital letters Φ,U instead.

Near the interface, the lowest order solution must satisfy

(φ0)zz + V0(φ0)z + f(φ0, u0) = 0, (3.16)

D(u0)z = 0. (3.17)

Since to leading order u0(z) → 0 as z → −∞, we have u0 ≡ 0. This means that V0 must

be zero for (3.16) to have a solution.

The leading order ‘outer’ problem for ζ > 0 is

f(Φ0, U0) = 0, (3.18)

D(U0)ζ = V1

(
−U0 +

1

2
p(Φ0)− 1

2

)
. (3.19)

Therefore, Φ0 ≡ −1 and the solution of the second equation is just

U0 = −1 + exp

(
−V1

D
ζ

)
, ζ > 0, (3.20)

where we have assumed that the interface is at ζ = 0 and the leading order matching

condition has been used.

For the next order of solution, the inner problem for u1 gives

D(u1)z = V1

(
u0 +

1

2
p(φ0)− 1

2

)
,

which has the general solution

u1(z) = u1 +
V1

2D

∫ z

−∞
p(φ0(z))− 1 dz,

where u1 is a constant of integration. Expanding the left-hand boundary condition

u(−∞) = −∆ + 1 in powers of δ, it follows that u1 = −1. Then φ1 solves the linear

equation [
d2

dz2
+ fφ(φ0, 0)

]
φ1 = −V1(φ0)z +

λ

2
u1p
′(φ0),
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which has the solvability condition

−V1

∫ ∞
−∞

(φ0)2
z dz +

λ

2

∫ ∞
−∞

u1[p(φ0)]z dz = 0.

As before, we set the integral of (φ0)2
z equal to I , and find that∫ ∞

−∞
u1[p(φ0)]z dz ≡ 2 +

V1

D
J,

where J is the integral

J =

∫ ∞
0

1− p(φ0)2 dz.

The solvability condition may then be restated in terms of the leading order velocity:

V ∼ δV1 = δλ

(
I − λ

2D
J

)−1

. (3.21)

Condition (3.21) says that when the ratio λ/D is small, then there is a branch of

solutions for ∆ > 1 where the velocity is roughly proportional to ∆− 1; it will be shown

that this branch is stable. However, when the ratio λ/D is larger than 2I/J , for the leading

order velocity to be positive one needs ∆ < 1. This is a rather unphysical situation: the

velocity decreases with increasing undercooling. It will be demonstrated later on that this

branch is actually unstable.

Figure 1 shows numerical computations of V using an elementary shooting method

where the particular constitutive functions are

g(φ) =
1

4
(1− φ2)2, p(φ) =

15

8

(
φ− 2

3
φ3 +

1

5
φ5

)
.

When λ/D is subcritical (less than about 2.6 in this case), solutions only exist in the

hypercooled region (when ∆ > 1). But when the ratio is large, solutions are seen to exist

for undercoolings which are smaller than 1. Furthermore, we see that the large diffusion

length solution branch is simply a continuation of the the unstable branch of solutions in

the small diffusion length case.

4 The fast relaxation and bistable travelling wave problems

In the limit of slow diffusion or fast relaxation, two different travelling wave problems

arise simultaneously, operating on different timescales: the (slow) FR problem and the

(fast) BTW problem. Alternatively, for slow relaxation, we obtain a different bistable

travelling wave problem (problem AB). We shall again rescale both V and DT by α as in

the previous section.

We first consider the FR problem (2.7)–(2.8). The analog of the dissipation equality

(3.6) in the PF problem is

∆− 1

2
=
D

V

∫ ∞
−∞

u2
z dz. (4.1)

This means that again one needs ∆ > 1
2

to obtain forward moving solutions. It turns

out that for large diffusion lengths, and most likely in general, solutions are unstable.
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Figure 1. Numerical solution of travelling wave velocities as a function of the undercooling. The

plots from right to left are for the values λ/D = 0.8, 4.0, 8, 40. In each case, λ = 0.4.

Therefore initial data will generically be driven to the alternative faster dynamics, given

by the BTW problem.

The BTW problem (2.11) has been extensively studied [12, 11]. This problem has a

unique solution and wave speed. The dissipation of free energy for this case is

[F(φ; e∞)]z=∞z=−∞ = V

∫ ∞
−∞

φ2
z dz. (4.2)

For V to be positive and O(1), the undercooling must necessarily satisfy ∆ > 1
2
. In

particular, if V is small, then asymptotically

V ≈ I−1 [F(φ; e∞)]z=∞z=−∞ (4.3)

where I is just the integral of (φ0)2
z , φ0 being the solution for V = 0. In other words,

the propagation velocity is roughly proportional to the jump in free energy across the

interface.

We finally discuss the AB problem, which is of the same form as the BTW problem,

the difference being that temperature, rather than internal energy, is constant across the

interface. Multiplying (2.12) by φz and integrating gives

λuI = −V
∫ ∞
−∞

φ2
z dz.

To a good approximation, the velocity therefore is proportional to the negative interface

temperature.

5 Stability and approach to the travelling wave solutions

For arbitrary initial data, the asymptotic inner solution will only be valid after a very

short initial transient time. Even so, there is no guarantee that this travelling wave solution

will be approached if it is not stable. Here a time-dependent analysis is presented for
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the situation where the diffusion length is small, but large compared to the interface

width ε. This determines the leading order dynamics of the transient solution and allows

conclusions to be drawn about stability.

We introduce a new small variable δ, representing the ratio of interface width to

diffusion length which will play the same role as it did in the § 3.2. We will conduct a

time-dependent analysis as ε, δ → 0 with the further assumption that

ε = o(δ2). (5.1)

We will attempt a matched expansion now in some new rescaled spatial coordinate ζ. The

coordinate system near the interface for the inner expansion is the same as before. The

new spatial scale ζ is defined by

ζ = δε−1r

so that the diffusion length measured in terms ζ is exactly unity. We shall look for

dynamics on a very fast time scale, namely

T = δ2ε−2t.

5.1 The PF problem

In the new coordinate system, the equations pertaining to the inner solution may be

written

δ2φT = δ2φζζ + f(φ, u) + o(δ2), (5.2)

eT = DTuζζ + o(δ). (5.3)

The outer solutions are the same as before: the temperature field is constant, and φ = ±1.

Equations (5.2)–(5.3) are the one-dimensional versions of those considered in the

Caginalp–Fife analysis [8], where δ now plays the role of the small parameter. Rather

than repeating their somewhat lengthy analysis, we only summarize the resulting free

boundary problem. We then examine the stability of fronts for this problem instead.

In the limit δ → 0, the leading order behaviour of u is δU(ζ, t) where U satisfies the

one-dimensional ‘Stefan’ problem

UT = Uζζ in (−∞,∞)/{s(t)}, (5.4)

V ≡ s′(T) = −βU(s), (5.5)

V = DT [Uζ(s+)−Uζ(s−)], (5.6)

where s(T) denotes the position of the interface and s+, s− are limits from the left and

right, respectively. The kinetic coefficient β is given by

β = λ−1

(
I − λ

2D
J

)
. (5.7)

where I and J are the same integrals as in § 3.2. Note that the velocity V is defined in

terms of the rescaled coordinates; in original coordinates the velocity is actually ε−1δV .

The boundary conditions for U are given by a matching condition:

U(−∞) = uS = uL + 1, U(+∞) = uL ≡ −∆. (5.8)
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The first remark to be made is that the problem (5.4)–(5.8) has the well known travelling

wave solution

s(t) = VT, (5.9)

U0(ζ,T) = −∆+ exp

[
− V

DT
(x− VT)

]
, (5.10)

with velocity

V =
∆− 1

β
.

Note that V is identical to the velocity derived in equation (3.21). Thus the hypercooled

solution branch simply corresponds to β > 0, whereas the non-hypercooled branch

corresponds to β < 0.

For arbitrary initial conditions, it is known what occurs in the case β > 0 [10]. For

∆ > 1, the travelling wave solution is globally attracting. When ∆ < 1, solutions slow

down via a t−1/2 power law, and approach a self-similar solution originally derived by

Zener [34].

The case where β < 0 has received, on the other hand, little attention. We shall

demonstrate here that the travelling wave solution is, as expected, unstable.

Consider a perturbation to the travelling wave solution given by

U(ζ,T) = U0(ζ,T) + εeωT ×
{
Ae−µ+(ζ−VT), ζ < Vt,

Be−µ−(ζ−VT), ζ > Vt,
(5.11)

and

s(T) = VT+ εeωT, (5.12)

where ε is some small quantity, and µ− < 0, µ+ > 0, ensuring that the perturbation is

bounded (Of course, more general perturbations could be considered, but we are only

interested in instability). Inserting these into equations (5.4)–(5.8), to leading order in ε we

obtain that A = B, and ω, µ−, µ+ satisfy

ω + µ−V = µ2−, (5.13)

ω + µ+V = µ2
+, (5.14)

µ+ − µ− = −β−1. (5.15)

Equations (5.13)–(5.15) have the real solutions

µ± =
1

2
(−V ±

√
V 2 + 4ω),

where ω is given by

ω =
1

β2
− V 2 =

1− (∆− 1)2

β2
.

Provided ∆ < 1, ω is positive, proving instability.

5.2 The FR problem

The analysis for the FR problem follows the same lines as what appears above. The only

real difference is that the time derivative term in equation (5.2) vanishes. This leads to
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Table 1. Various behaviours of the phase field model in different parameter regimes. The

velocity scales are those of the stable solutions. For rapid growth situations, the interface

velocity is determined solely by solving the travelling wave problem listed

τ scale DT scale Velocity scale Interfacial Motion Undercooling regime

O(ε2) O(1) O(1) MS ∆ < 1

O(ε2) O(1) O(ε−1) PF ∆ > ∆∗
O(ε2) O(ε) O(ε−1) BTW ∆ > 1

2O(ε3) O(1) O(ε−2) BTW ∆ > 1
2O(ε3) O(ε) O(ε−1) BTW ∆ > 1
2O(ε) O(1) O(1) AB any

O(ε) O(ε) O(1) PF ∆ > ∆∗
O(ε) O(ε) O(ε) MS ∆ < 1

the same modified Stefan problem as before, except that the I term in equation (5.7) is

suppressed, giving instead

β = − δ

2D
J < 0. (5.16)

By virtue of the results above, we may conclude that solutions to the FR problem are

always unstable.

6 Discussion; relationship to other models

By considering different scales of variables and parameters in the phase field model, we

have classified several possible behaviours the model can have. A summary is given in

Table 1. It may be that all of the parameter regimes we have studied are not experimentally

accessible, but we have nevertheless included them for completeness. The free boundary

problems obtained have a close relationship with existing theories of solidification; we

now discuss this.

The most interesting case is that which yields the PF system. When λ/D is supercritical,

steady solutions exist without hypercooling. This is not possible in many models of

rapid solidification, but it is not clear experimentally if this should always be the case.

The experiments of Glicksman & Schaefer [15] on white phosphorus showed a velocity

dependence which decreased in a continuous fashion as the undercooling decreased below

unity, much as in the left-most curve in Figure 1. It should be pointed out that their

solidification fronts in this regime were not strictly planar, however, and therefore cannot

be directly compared to our results.

For the subcritical case, rapid dynamics may only exist for the situation of hypercooling.

The front velocity is only determined by local conditions, namely the (local) undercooling.

This resembles models for hypercooling of Bernoff and Sarocka [27], as well as Umantsev

& Davis [31]. Their theories also incorporate dependence on local geometric properties

of the interface; we anticipate that proceeding to further orders in the time-dependent

asymptotics would produce these features in the phase field model as well.

The other cases which give the BTW problem yield a generalization of many geometric

models of crystal growth [30], which assume that the velocity is proportional to the



Rapid growth in phase field models 55

jump in free energy at the interface. Note that the BTW problem is obtained by the fact

that e is constant across the interface. In alloy solidification, where e represents solute

concentration, this is an important non-equilibrium effect known as solute trapping [3, 1].

7 Conclusion

A mathematical treatment of rapid dynamics in phase field models has been presented.

Interfacial motion different from the usual Mullins–Sekerka problem has been derived.

The essential qualitative and quantitative features of front dynamics have also been

produced.

We mention that the necessity of using a free-energy functional in constructing the

model is only due to the mathematical simplicity which results. For other models which

are not based on a variational principle, the qualitative structure of the equations (3.1)–

(3.2) is still the same and should produce similar behaviour. The incorporation of other

effects such as long range forces and anisotropy of surface energy, however, may be

important. In particular, anisotropy could result in fast growth in certain directions but

not others due to the critical nature of existence.

Future work should include extending the analysis presented here to models with

unequal diffusion scales, such as those encountered in alloy solidification. Additionally,

the asymptotics may be carried out to further orders to derive presumably geometric

corrections to the interface motion laws.
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