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Abstract: Under certain conditions we can reconstruct an attractor using time delay

maps. This project describes a theorem by Berry, Cressman, Gregurik-Ferencec and Sauer

that allows us to use a time delay embedding to reconstruct said dynamics

1. Introduction

According to Strogatz, Roux(1983) exploited a data analysis technique known as at-

tractor reconstruction. The dynamics in the full phase space can be reconstructed from

measurements from a single time series. The method is based in time delays. How can

we choose the embedding dimension? One needs enough delays so that the attractor can

disentangle itself in phase space. the following example, taken from Strogatz uses one delay

so that x(t) = (B(t), B(t − τ)), τ = 8.8 Figure1 one ahows the time series and Figure 2

show the results of this reconstruction.

Conventional techniques of dimensionality reduction such as Karhunen-Loeve decom-

position have been unable to recover a low-dimensional process. A key feature of delay

coordinates is that they project the data onto the most stable dynamical variables. We’re

interested in separating time scales in the data by projecting into the most stable dy-

namical directions. It’s important to separate the extrinsic features of the data, such as

Figure 1. Time series
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Figure 2. Attractor reconstruction

the observation and embedding space, from the intrinsic dynamical features such, as Lya-

punov exponents and associated invariant manifolds. The fact that the embedding is given

by a diffeomorphism of the attractor shows that the time-delay embedding is topology-

preserving, although crucially it introduces a new geometry on the data set. We will see

that the new geometry is related to the Lyapunov metric restricted to the most stable

Oseledets subspace.

2. The theorem

Let M be an n-dimensional smooth compact Riemannian manifold which is the attractor

of a system denoted ẋ = f(x), with invariant measure µ for the induced flow Ft (fixed time

set τ > 0). According to Oseledets there exist real numbers σ1 ≤ · · · ≤ σk with k ≤ n

such that for µ-almost every x, there is a splitting TxM =
⊕k

i=1Ei(x) where dimEi = di

and where d1 + · · ·+ dk = n. Each Oseledets space Ei(x) is invariant under the dynamics,

meaning that any nonzero vector ui ∈ Ei(x) has image DF−jτ (x)ui ∈ Ei(DF−jτ (x)).

Moreover, for any ui,x ∈ Ei(x),

lim
j→∞

1

j
ln||DFjτ (x)ui|| = σi

lim
j→−∞

1

j
ln||DFjτ (x)ui|| = −σi

Assume a multivariate observation of dimension r, given by a smooth nonlinear h ∈
C∞(M,Rr). For κ, τ > 0 define the κ-weighted delay coordinate map H : M → Rr(s+1) by

H(x) =
[
h(x), e−κh(F−τ (x)), e−2κh(F−2τ (x)), . . . , e−sκh(F−sτ (x))

]T
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For each ε > 0 the ε-Lyapunov metric is defined by 〈u, v〉ε is defined by

〈ui, vi〉ε =
∑
j∈Z

e−2(σij+ε|j|)〈DFjτ (x)ui, DFjτ (x)vi〉TxM

for ui, vi ∈ Ei(x) The Lyapunov metric is intrinsic to the dynamics, and so it will be the

Remannian metric of interest on M . Let’s investigate the metric induced on the embedded

manifold H(M). Let u = u1 + · · ·+ uk, v = v1 + · · ·+ vk ∈ TxM where ui, vi ∈ Ei(x) and

denote û = DH(u), v̂ = DH(v) ∈ TH(x)H(M). Then 〈·, ·〉 in the Euclidean reconstruction

space Rr(s+1) is

〈û, v̂〉 =

s∑
j=0

e−2jκ〈Dh(F−jτ (x))DF−jτ (x)u,Dh(F−jτ (x))DF−jτ (x))v〉Rr

The main theorem shows that, with the right choice of κ, the metric in the embedding

space projects onto the most stable Oseledets subspace

Theorem

Let M be a compact manifold, u, v ∈ TxM , and let û = DH(u) and v̂ = DH(v) be the

images under the time delay embedding H. Let ui = πi(u) be the projection onto the ith

Oseledets space, and assume that u1 and v1 are nonzero. Let 0 < κ < −σ1. Then for a

prevalent choice of H and for all i 6= 1,

lim
s→∞

〈ûi, v̂i〉
||û|| ||v̂||

= 0

and therefore,

lim
s→∞

〈û, v̂〉 − 〈û1, v̂1〉
||û|| ||v̂||

= 0

We need to show that the component of û in the most stable direction dominates as s

increases. Thus we will bound ||û|| from below, and we will focus on the component u1

which is assumed to be nonzero. Choose κ ≥ 0 such that r(κ + 1) ≥ n; then the delay

coordinate map is an immersion for a prevalent choice of H. From this we need only the

fact that for all x ∈M and all j ≥ 0 the rank of the r(κ+ 1)× n matrix

Aj(x) =


e−κjDh(F−jτ (x))DF−jτ (x))

...

e−κ(k+j)Dh(F−(k+j)τ (x))DF−(k+j)τ (x))


is n, implying that the kernel of the matrix is zero. For any nonzero vector u1 ∈ E1(x) the

vectorAj(x)u1 is nonzero, and for some j ≤ l ≤ j+k, the r-vector e−κlDh(F−lτ (x))DF−lτ (x)u1 6=
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0. Thus for each x ∈ M we have maxj≤l≤j+k ||Dh(F−lτ (x))e1||Rr > 0 for any unit vector

e1 ∈ E1(x). Since M is compact we can define

hmin ≡ min
x∈M

min
j≥0

max
j≤l≤j+k

||Dh(F−lτ (x))e1||Rr

= min
x∈M,j≥0,y=F−jτ (x)

max
0≤l≤k

||Dh(F−lτ (y))e1||Rr

≥ min
x∈M

max
0≤l≤k

||Dh(F−lτ (x))e1||Rr > 0.

From this we get the lower bound

||Aj(x)u1||Rr(k+1) ≥ hmine
−j(κ+σ1+ε) ||u1||ε

for all x ∈ M . We can use this to obtain a lower bound on ||û|| by splitting the s terms

into bs/kc block of size k so that

||û||2 ≥
s∑
j=1

e−2jκ ||Dh(F−jτ (x))DF−jτ (x)u1||2Rr

≥
bs/kc∑
l=0

||Alk(x)u1||2

≥ h2min ||u1||
2
ε e
−2kbs/kc(σ1+κ+ε)

≥ h2min ||u1||
2
ε e
−2ks(σ1+κ+ε)

By combining the upper and lower bounds, we have

〈ûi, v̂i〉
||û|| ||v̂||

≤
(
h2max

h2min

||ui||ε
||u1||ε

||vi||ε
||v1||ε

) ∣∣1− e−2(s+1)(σi+κ−ε
∣∣

e−2s(σ1+κ+ε)
→ 0

as s → ∞ for i 6= 1. For large s, 〈û, v̂〉 ≈ 〈û1, v̂1〉 so the metric is negligible in all but the

most stable Lyapunov direction.

3. Discussion

The proof fails if the hypothesis 0 < κ < −σ1 is not satisfied. If κ ≤ 0, the matrix norm

of A(x) cannot be bounded. Whenκ ≥ −σ1, the norm converges to to a finite value in each

Oseledets component destroying the projection onto the stable component.

The proof shows that The constants hmax and hmin allow for local deviations from the

long term behavior of the dynamical system , governed by the Lyapunov exponents. If
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the dynamics are reversible, the least stable Oseledets space becomes the most stable in

reverse time. To reverse time we only need to reverse the ordering of the data.

Weighted time delay coordinates not only reconstruct the topology of the but they can

also regularize the dynamics.

The projection onto the most stable manifold will often achieve a significant dimensional

reduction.
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