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1 Low dimensional cloud modeling

Cloud modeling is a very difficult task: one must understand the cloud’s microphysics, albedo or ability to reflect
sunlight, mixture of liquid and ice, etc. These difficulties result in wide variations of how clouds are represented in global
climate models [2]. For example, certain cloud models that covert water to ice at relatively low temperatures lead to a
global climate model with a higher mean-state cloud fraction [3].

In an attempt to tackle some of these known difficulties, researchers are looking to qualitatively describe clouds
with low dimensional models. An example of this comes from Koren and Fiengold (2011): they use the Lotka-Volterra
predator prey equations to model the interaction between the rain rate of a cloud and the cloud’s liquid water path
(column integrated liquid water content). It would seem that these two observables have some predator prey interactions.
As water droplets form, they consume the water vapor within the cloud, potentially leading to the destruction of the
cloud. In the absence of rain, the amount of water vapor can grow until reaching a critical point.

Figure 1 shows a cloud system over the Atlantic ocean. In the figure, there are areas of dense clouds structures and
areas of open cells which show the dark ocean below. A goal of this work is to capture qualitative details of these cloud
types using these predator prey insights.

As a cloud presents rain, the liquid water path (LWP) and height of the cloud (H) decrease. However, instead
of setting up the predator-prey model for the interactions between LWP and R, the authors opt to design the system
around H and the cloud drop concentration N . H relates to LWP by

LWP =
c1
2
H2 (1)

where c1 is a function of cloud based temperature and pressure and to first order the rain rate R can be expressed as

R = α
H3

N
(2)

for appropriate α. The balance equations for cloud depth H and cloud drop concentration N are

dH

dt
=
Ho −H(t)

τ1
− Ḣ(t− T ) and

dN

dt
=
No −N(t)

τ2
− Ṅ(t− T ). (3)

In the above equations Ho and No are the full environmental potential for cloud development; this means the first term
in both equations represent the system’s approach to their full potential with characteristic time constants τ1 and τ2.
Ḣ and Ṅ are the loss of H and N after some delayed time T . Based on theoretical and empirical results, the authors
derive Ḣ and Ṅ to yield the final set of equations

dH

dt
=
Ho −H(t)

τ1
− αH2(t− T )

c1N(t− T )
and

dN

dt
=
No −N(t)

τ2
− αc2H3(t− T ). (4)

For the specified parameters, figure 1 illustrates the interactions between the cloud depth and drop concentration as well
as the derived interactions between LWP and rainrate.

Our goal now is to find the system’s steady states and understand their stabilities. To make life simpler, we perform
the following transformations to yield dimensionless solutions which we can later transform back: Let

t 7→ t

τ1
, H 7→ 0.01 ∗ c2H, and N 7→ c22

1E11ατ1
N (5)

and define c = c2
1E9c1

, τ = τ1
τ2

. This leaves us with the following delay differential equations

dH

dt
= Ho −H(t)− cH2(t− T )

N(t− T )
and

dN

dt
= τ(No −N(t))−H3(t− T ). (6)
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Figure 1: Left: Cloud depth H (blue) and cloud drop concentration N (brown). Middle: Cloud depth plotted against
cloud drop concentration. Right: Rainrate (blue) and liquid water path (brown); these values are calculated by (2)
and (1) respectively. For all three figures, the parameters are Ho = 650m, No = 469E6m−3, α = 2E − 3m−5/d,
c1 = 2E− 9m−1, c2 = 0.3m−1, τ1 = 80min, and τ2 = 84min, T = 20min.

A steady state solution to the above delay differential equation is independent of the delay T . We solve for the steady
state solutions in terms of Ho and No keeping in mind our larger parameter estimation goals. Solving the equations
dH
dt = 0 and dN

dt = 0 and only keeping positive solutions we get

H =
−N +

√
N2 + 4HoN

2
and N = No −

H3

τ
. (7)

Given that we are treating Ho and No as free parameters, the contour plots for the steady state solutions are a surface
in the space (Ho;N) for the cloud depth H and (No;H) for the drop concentration N . The contour plots for the steady
state solutions can be seen in figure 2.

Figure 2: Steady state contour plots for: cloud depth, m, (left) and drop concentration, m−3, N (right). The parameters
and initial conditions are the same as figure 1.

For the cloud depth contour plot in figure 2, there appear to be two regimes: for higher drop concentration the steady
states are mainly dictated by Ho and lower drop concentration seems to control the steady solution with little influence
from Ho. As for the drop concentration contour plot, the steady state solutions are seemly dictated by the cloud depth,
influenced little by No.

Studying stability of steady states and doing bifurcation analysis for delay differential equations is a difficult problem.
For example, determining linear stability for a differential equations requires finding the eigenvalues of the linearized
system. For delay differential equations, the characteristic equation for the linearized system can have infinitely many
roots, often making it a difficult task to determine stability. For these reasons, we step away from the derived cloud
models and focus our attention towards a slightly easier problem. We will now study the steady states and their stability
for the delayed Lotka-Voltera equations. It is our hopes that this work can direct future work with these cloud models.

2 Predator Prey

The Lotka-Voltera equations are a standard mathematical model to illustrate the interactions between a predator and
its prey. Independently derived by Alfred J. Lotka and Vito Volterra over a century ago, these equations and many
variations have been studied extensively in biological and ecological sciences. The equations are given by

dC

dt
= C(α− βR) and

dR

dt
= −R(γ − δC)
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where C and R represent the predator and prey population respectively and α, β, γ, and δ are positive model pa-
rameters. Complexity can be adding to these models by taking into account the amount of time it between birth and
maturity of the predator or prey. Adding this into the model yields the equations

dC

dt
= C[α− βR(t− T )] and

dR

dt
= −R[γ − δC(t− T )] (8)

where T represent some time delay for the predator and prey. These are the equations that we will work with to
determine the steady states and their linear stability, in an effort to guide future work with the cloud models.

This system has two biologically relevant steady states: one at (C,R) = (0, 0) and the nontrivial one at (C,R) =
(γ/δ, α/β) which can easily derived. For the trivial steady state, we can easily determine the linear stability.(

Ċ

Ṙ

)
=

(
α 0
0 −γ

)(
C
R

)
+

(
0 0
0 0

)(
C(t− T )
R(t− T )

)
(9)

The characteristic matrix for this linearizion about (0, 0) is

∆(λ) =

(
λ 0
0 λ

)
−
(
α 0
0 −γ

)
−
(

0 0
0 0

)
e−Tλ

=

(
λ− α 0

0 λ+ γ

)
.

Then the characteristic equation is given by

P (λ) = det
(
∆(λ)

)
= (λ− α)(λ+ γ) (10)

and the roots to (11) are the desired eigenvalues: α and − γ. Given that all model parameters are positive, we know
that we have a saddle point at the fixed point (0, 0). For the second relevant steady state (γ/δ, α/β), the linearized of
(8) about the steady state is (

Ċ

Ṙ

)
=

(
0 0
0 0

)(
C
R

)
+

(
0 −βγ

δ
δα
β 0

)(
C(t− T )
R(t− T )

)
(11)

yielding the characteristic matirx

∆(λ) =

(
λ 0
0 λ

)
−
(

0 0
0 0

)
−

(
0 −βγ

δ
δα
β 0

)
e−Tλ (12)

=

(
λ βγ

δ e
−Tλ

− δα
β e

−Tλ λ

)
. (13)
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and characteristic equation

P (λ) = λ2 + αγe−2Tλ. (14)

There are infinitely many roots to (14). To begin understand the stability of the steady state, we first consider two
special cases. The simplest case to consider is if λ = 0. In this case

P (0) = αγ.

Given that α and γ are positive, P (0) does not have any roots and we no longer need to consider this case. A more
interesting case is if the eigenvalue is purely imaginary, i.e. λ = iω for ω > 0. Then (14) becomes trying to solve

(iω)2 + αγe−2Tωi = 0. (15)

Expanding (15) and splitting into real and imaginary parts, we get

0 =αγ cos
(
− 2ωT

)
− ω2 (16)

and 0 =αγ sin
(
− 2ωT

)
. (17)

Given that α and γ are positive, (17) gives that ω =
π

2T
k for k ∈ Z. Substituting ω = π/2T into (16),

0 = αγ cos
(
− 2π

)
−
( π

2T

)2
(18)

⇒ T =
π

2
√
αγ

(19)

⇒ w = 2
√
αγ (20)

Thus, λ = (2
√
αγ k)i for k ∈ Z\{0} is a root of (14) provided the delay T =

π

2
√
αγ

Let us define a function λ(T ) := µ(T ) + iω(T ) around T∗ =
π

2
√
αγ

such that µ(T∗) = 0 and ω(T∗) = 2
√
αγ. With

hopes to satisfy the Hopf bifurcation theorem conditions [4] [5], we want to show that

dRe(λ)

dt

∣∣∣∣
λ=λ(T∗)

> 0. (21)

If we can show (21), it would be one step towards showing that (8) has a Hopf bifurcation at (C,R) = (γ/δ, α/β). We
implicitly differentiate (10) equated to zero

0 = 2λ
dλ

dt
− 2αγTe−2Tλdλ

dt
(22)

⇒ 0 =
dλ

dt
(2λ− 2αγTe−2Tλ) (23)

Evaluating (23) at λ = λ(T∗) and T = T∗ yields

0 =
dλ

dt
(4
√
αγi− π√αγ). (24)

The right factor is nonzero implying that
dλ

dt
= 0 resulting in

dRe(λ)

dt

∣∣∣∣
λ=λ(T∗)

= 0.

Thus, we can not use the Hopf bifurcation theorem to gain understanding of our dynamical system.
We focus our attention towards understanding, in the most general case, the linear stability of the steady state

solution (C,R) = (γ/δ, α/β). We need to understand the roots of (14). Taking small bites, we assume that αγ = 1 and
T = 1/2 leaving us to find the solutions to

0 = λ2 + e−λ (25)

iv



With an eye towards determining stability, we focus on the sign of the real parts of solutions to (25) which are of
the form

Re(λ) = Re

[
W

(
k,
−i
2

)]
(26)

Where W
(
k, −i2

)
is the kth solution of the Lambert W function which is defined as the inverse function to

f(z) = zez.

A few evaluations gives us all the information we need:

Re

[
W

(
0,
−i
2

)]
≈ 0.1626 and Re

[
W

(
1,
−i
2

)]
≈ −1.8267

which shows that this steady state is linearly unstable.

3 Conclusions

To gain insight into cloud modeling, a notoriously difficult task, we considered a simplified model that captures quali-
tative cloud behavior. The Lotka-Volterra predator prey models provide a well studied system to derive more complex
dynamical systems that present oscillatory behavior. Although this work is not complete, studying the stability of steady
states in the delayed Lotka-Volterra models provide useful insight. This instability of the fixed point is not physically
realistic in that a predator prey system cannot have unbounded oscillations. Hopefully future work will find stable
steady states in the Koren-Fiengold cloud models that match observable cloud patterns.
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