
MATH 557A: Extended Abstract on Discrete Painlevé II
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Abstract for the (Extended) Abstract

The discrete Painlevé equations are considered the fundamental objects of study in discrete integrable systems.
In this extended abstract, I’ll work with DPII (Discrete Painlevé II), and demonstrate some techniques which are
useful in studying these sorts of discrete dynamical system. We’ll see how one can compactify dynamics on R2

via projectivisation, and how one can then resolve singularities via the algebro-geometric technique of blowing
up.

1 DPII: As an Iterated Map on R2

The discrete Painlevé II equation is the following recurrence relation

un+1 + un−1 =
znun + a

1− u2n
(1)

for n ∈ Z. [2]

Here, zn and a are parameters, with zn being a ‘time-dependent’ parameter.

To simplify some of the considerations, we’ll autonomise the system (setting zn = z for all n), and we’ll introduce
the change of parameters α = 1

2 (z + a) and β = 1
2 (−z + a) to obtain the following system:

un+1 + un−1 =
(α− β)un + α+ β

1− u2n

=
α(1 + un) + β(1− un)

1− u2n

=
α

1− un
+

β

1 + un
.

Setting (xn, yn) = (un, un−1), we obtain

xn+1 =
α

1− xn
+

β

1 + xn
− yn, (2)

yn+1 = xn. (3)

Thus, the autonomous DPII equation is equivalent to iterating the following map D : R2 → R2:

D : (x, y) 7→
(

α

1− x
+

β

1 + x
− y, x

)
.
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2 DPII as a QRT Mapping

2.1 The QRT Mapping

Given two matrices

Ai =

 αi βi γi
δi εi ζi
κi λi µi

 , i = 0, 1, (4)

one defines two vector functions  f1
f2
f3

 := (A0X)× (A1X) (5)

 g1
g2
g3

 := (AT
0 X)× (AT

1 X), (6)

where X := (x2, x, 1)T . The Quispel-Roberts-Thompson mapping (QRT) associated to (A0, A1) is given by

xn+1 =
f1(yn)− xnf2(yn)

f2(yn)− xnf3(yn)
(7)

yn+1 =
g1(xn+1)− yng2(xn+1)

g2(xn+1)− yng3(xn+1)
. (8)

Theorem. (QRT Constant of Motion) The system (7)-(8) has an invariant (or contant of motion) for each
orbit of the mapping:

(α0 +Kα1)x2ny
2
n + (β0 +Kβ1)x2nyn + (γ0 +Kγ1)x2n + (δ0 +Kδ1)xny

2
n

+ (ε0 +Kε1)xnyn + (ζ0 +Kζ1)xn + (κ0 +Kκ1)y2n + (λ0 +Kλ1)yn + (µ0 +Kµ1) = 0.
(9)

Thus, being able to recognise a discrete dynamical system as QRT mapping has the immediate benefit of
throwing out a constant of motion for free!

2.2 DPII is a QRT Mapping

Taking

A0 =

 −1 0 1
0 β − α −(α+ β)
1 −(α+ β) µ

 , A1 =

 0 0 0
0 0 0
0 0 1


yields the following for QRT:

F (x) = G(x) =

 (β − α)x− (α+ β)
x2 − 1

0


so that the associated QRT mapping is

xn+1 =
α

1− yn
+

β

1 + yn
− xn = D(yn, xn)

yn+1 =
α

1− xn
+

β

1 + xn
− yn = D(xn, yn).

Setting u2n = xn and u2n+1 = yn recovers precisely the equation

un+1 =
α

1− un
+

β

1 + un
− un−1,

which is the first form of the autonomous DPII equation we encountered.

Thus, we have the following constant of motion:

−x2ny2n + x2n + (β − α)xnyn − (α+ β)xn + y2n − (α+ β)yn + (µ+K) = 0.

In particular, for the iterated map D : R2 → R2, we have that the following is constant on orbits

x2y2 − x2 − y2 + (α− β)xy + (α+ β)(x+ y). (10)
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3 Orbits of DPII

To motivate the next section, I’ve plotted some trajectories for DPII on top of the corresponding constants of
motions prescribed in the previous section.
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In all of the above, the red curve is an implicit plot of the level set of the polynomial in Equation 10 corresponding
to the given parameters and initial point.

The blue dots are the points of the orbit O(x0, y0) = {Dn(x0, y0) : n ∈ N ∪ {0}}.
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4 Projectivisation

In all of the above plots, we see that our orbits go ‘off to infinity’ in two ways: with slope zero or slope ’infinity’.
We’ll use projective space to extend the dynamics to infinity, so that two paths going to/coming from infinity,
with the same slope, will meet. This lines up precisely with the notion of singularity confinement in [1].

Real projective 2-space, P2(R), is the quotient manifold obtained from R3 \ {0} modulo homothety ((t, x, y) ∼
(t′, x′, y′) iff ∃λ ∈ R \ {0} for which (t′, x′, y′) = λ(t, x, y)). We denote points of P2(R) = R3 \ {0}/∼ by [t : x : y],
where not all of t, x and y are zero.

There are three typically chosen charts (each a copy of R2):

t-chart : {[1 : x : y] : x, y ∈ R}
x-chart : {[t : 1 : y] : t, y ∈ R}
y-chart : {[t : x : 1] : t, x ∈ R}.

The ‘line’ t = 0 (which gives a copy of P1(R)) is how we depict infinity in this picture: t 6= 0 gives us back the
(x, y)-plane, and what’s left is infinity. We call t = 0 the projective line at infinity.

To extend a rational mapping on (f1, f2) : R2 → R2 to one on P2(R), we simply apply the mapping on the
t-chart [1 : x : y] 7→ [1 : f1(x, y) : f2(x, y)], clear denominators, and homogenise the polynomials using t (which
is equal to one in the t-chart). Polynomials P : R2 → R can similarly be extended to polynomials P : P1(R)→ R
via homogenisation.

4.1 Projectivisation of D
I’ll use PD to denote the projectivisation of D. On the t-chart, our map needs to agree with

[1 : x : y] 7→
[
1 :

α

1− x
+

β

1 + x
− y : x

]
≡ [1− x2 : α(1 + x) + β(1− x)− y(1− x2) : x(1− x2)].

Thus, our map PD : P2(R)→ P2(R) is given by

PD : [t : x : y] 7→ [t3 − tx2 : (α+ β)t3 + (α− β)t2x− t2y + yx2 : t2x− x3]. (11)

There are a few different things we can do with PD to further study D. But, for the sake of brevity, I’ll choose
to use it to answer just one natural question: what has this added to the dynamics?

Away from t = 0, we’re just in the (x, y)-plane, and we’ve changed nothing. But, what the dynamics on t = 0?
Plugging in t = 0 to (11) yields:

PD : [0 : x : y] 7→ [0 : yx2 : −x3]. (12)

Immediately, this tells us that, if we start on t = 0, we stay on t = 0. Further, if x and y are nonzero, then the
map is

[0 : x : y] 7→ [0 : yx2 : −x3] ∼ [0 : y : −x] 7→ [0 : −xy2 : −y3] ∼ [0 : −x : −y] = [0 : x : y]

so that orbits starting on t = 0 (away from xy = 0) are periodic of period two.

4.2 Projectivisation of the Constant of Motion

We can also projectivise the constant of motion. For each orbit, we have an invariant (10)

x2y2 − x2 − y2 + (α− β)xy + (α+ β)(x+ y)− E = 0

where E is some constant associated to the orbit. Homogenisation yields

x2y2 − t2x2 − t2y2 + (α− β)t2xy + (α+ β)t3(x+ y)− Et4 = 0.

This intersects the line at infinity when t = 0, i.e.

x2y2 = 0.
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So, the line at infinity is hit at precisely two points [0 : 1 : 0] and [0 : 0 : 1] (not [0 : 0 : 0], since this is not in
P2(R)). The point [0 : 1 : 0] corresponds to going off to infinity vertically, and the point [0 : 0 : 1] corresponds
to going off to infinity horizontally. This confirms that our observation always holds.

An issue: If we fix our parameters α and β, then, no matter what initial conditions we choose, we’ll not have a
unique solution passing through the points [0 : 0 : 1] and [0 : 1 : 0]. In the next section, we’ll see how to extend
our manifold further (along with the dynamics) in such a way that our ‘energy’, E, uniquely picks out a level
set. This will give us the desired existence and uniqueness of solutions.

5 Blowing Up

The following construction will be formed for the origin in R2. Since P2(R) is covered by copies of R2, the
construction will extend to P2(R) by choosing charts appropriately and performing translations. The following
can be found (for C2) in [3].

We’ll effectively glue a copy of P1(R) to R2 through the origin, in a ‘smooth’ way. Namely, we define the blow
up of R2 at (0, 0) to be the closed set in R2 × P1(R) given by

X := {((x0, x1), [y0 : y1]) ∈ R2 × P1(R) : x0y1 = x1y0}.

This set comes equipped with a projection map π : X � R2 which maps ((x0, x1), [y0 : y1]) 7→ (x0, x1) (sur-
jective since away from (0, 0), we can just take y0 = x1 and y1 = x0, and, at (0, 0), we can take [y0 : y1] to be
arbitrary).

In fact, for x = (x0, x1) 6= (0, 0), π−1(x) is a singleton. And we see that π : X \ π−1(0) ∼= R2 \ {0}. We also
have π−1((0, 0)) = {((0, 0), [y0 : y1]) : [y0, y1] ∈ P1(R)} which is a copy of P1(R).

Thus, nothing changes away from the blow up point, but a projective line is introduced at the blow up point.

Intuition: We should think of this P1(R) as encoding slopes of incoming trajectories. Two trajectories crossing
(0, 0) with different slopes will hit this projective line at different points in the blow up. If two trajectories hit
(0, 0) tangentially, then we may have to repeat the blowing up process multiples times.

5.1 Example: The Cusp (y2 − x3 = 0) [5]

Consider the variety defined by
y2 − x3 = 0.

We’ll introduce a projective line, with coordinates [u, v], via the glueing ux = vy. In the chart where v 6= 0, we
can divide by v to obtain y = u

vx = wx, where I’ll use w to denote u
v . Thus

y2 − x3 = w2x2 − x3 = x2(w2 − x).
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We need to blow up again (to remove the multiplicity):

x = tw, w = w : ⇒ w2 − x = w2 − tw = w(w − t).

We can blow this up one more time (to resolve the triple intersection), but I’ll replace this step with a picture:

This last blow up is needed if we wish to have what is known as a strong desingularisation.

5.2 The DPII Invariant

As the page limit for this extended abstract is close, I’ll just perform the first blow up of the DPII constant
of motion. With each blow up, we see (as in the last example) that a factorisation drops the degree of the
polynomial we’re considering. Thus, since our invariant is of degree 4, it’s clear that we’d need no more than 4
blow-ups in order for the energy E to distinguishable for different level sets at t = 0. In our case, we’ll see that
the first blow-up knocks off a whole two degrees in one fell swoop!

As we saw earlier, the invariant

x2y2 − t2x2 − t2y2 + (α− β)t2xy + (α+ β)t3(x+ y)− Et4 = 0

has two projective solutions on t = 0, [0 : 0 : 1] and [0 : 1 : 0]. I’ll now blow up at the first point.

The point [0 : 0 : 1] lives in the y-chart, where we can take y = 1. Making this substitution gives

x2 − t2x2 − t2 + (α− β)t2x+ (α+ β)t3(x+ 1)− Et4 = 0.

The point [0 : 0 : 1] is identified with (0, 0) in the (t, x)-plane, so we blow up there.

Setting x = ut, we obtain

0 = u2t2−u2t4− t2 +(α−β)ut3 +(α+β)t3(ut+1)−Et4 = t2(u2−u2t2−1+(α−β)ut+(α+β)t(ut+1)−Et2).

So, the blown-up invariant becomes

u2 − u2t2 − 1 + (α− β)ut+ (α+ β)t(ut+ 1)− Et2.

Of course, this needs to be blown up further (after a change of coordinates to ‘recentre’ the singularity to the
origin), but this is left as a fun exercise for the reader!
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