Math 583B Spring 2012 Problem Set \#1

klin@math.arizona.edu
Due Wednesday, 2/1
Exercises. These do not need to be turned in.

1. Compute the Fourier transforms of the following:
(a) $f\left(x_{1}, \cdots, x_{d}\right)=e^{-\left(\left|x_{1}\right|+\cdots+\left|x_{d}\right|\right)}$
(b) $f(x)=\cos (x) g(x)$; express your answer in terms of \widehat{g}
(c) $f(x)=\sin (x) g(x)$; express your answer in terms of \widehat{g}
(d) $f(x, y)=\cos (x) \sin (y) g(x, y)$; express your answer in terms of \widehat{g} (note correction)
(e) $f(x, y, z)=\cos (x) \sin (y) e^{-z^{2}}$
(f) $f(x, y)=\frac{\partial^{2}}{\partial x \partial y}\left[\cos (x+y) e^{-\left(x^{2}+y^{2}\right) / 2}\right]$
(g) $f(x, y, z)= \begin{cases}1, & (x, y, z) \in[-1,1]^{3} \\ 0, & \text { otherwise }\end{cases}$
2. For each of the following PDEs, find the differential equation (in t) satisfied by the spatial Fourier transform $\widehat{u}(\omega, t)$ of u. Note that you do not need to solve the differential equation.
(a)

$$
u_{t}=\left(A+B \cos ^{2}(\lambda x)\right) u_{x x}
$$

with $u=u(x, t),(x, t) \in \mathbb{R} \times[0, \infty)$, and $A, B, \lambda>0$
(b)

$$
u_{t t}=\left(A+B \cos ^{2}(\lambda x) \sin ^{2}(\eta y)\right) \Delta u
$$

with $u=u(x, y, t),(x, y, t) \in \mathbb{R}^{2} \times[0, \infty)$, and $A, B, \lambda, \eta>0$
(c)

$$
u_{t}-u_{x}+2 u_{y}=e^{-x^{2} / 2 b^{2}} \cos (a y)
$$

with $u=u(x, y, t),(x, y, t) \in \mathbb{R}^{2} \times[0, \infty)$, and $a, b>0$

Problems. Please write these up and turn them in.

1. Consider the PDE

$$
u(x)+\Delta^{2} u(x)=f(x)
$$

where Δ denotes the Laplacian operator (and Δ^{2} means applying the Laplacian twice), f : $\mathbb{R}^{d} \rightarrow \mathbb{R}$ is given, and $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfies the boundary conditions $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. You can assume that f is sufficiently nice that its Fourier transform is well-defined.
(a) Find $\widehat{u}(\omega)$ in terms of $\widehat{f}(\omega)$.
(b) Suppose $f(x)=\delta(x)$ and $d=1$. Is u continuously-differentiable as a function of x ?
(c) Suppose $f(x)=\delta(x)$. For what values of d do the functions $u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{d}}$ simultaneously belong to $L^{2}\left(\mathbb{R}^{d}\right)$?
2. Consider the wave equation in 3-D, i.e.

$$
u_{t t}=\Delta u, \quad u: \mathbb{R}^{3} \times[0, \infty) \rightarrow \mathbb{R}
$$

with initial conditions

$$
\begin{aligned}
u(x, 0) & =0 \\
u_{t}(x, 0) & =\delta(x)
\end{aligned}
$$

Assume that $u(x, t)$ decays sufficiently rapidly as $|x| \rightarrow \infty$ so that its Fourier transform is well-defined.
(a) Find the Fourier representation of the solution, i.e., $\widehat{u}(\omega, t), \quad \omega \in \mathbb{R}^{3}$.
(b) Transform to spherical polar coordinates and show that

$$
u(r, t)=\frac{1}{4 \pi^{2} r} \int_{0}^{\infty}[\cos (\rho(r-t))-\cos (\rho(r+t))] d \rho
$$

where $r=|x|$ and $\rho=|\omega|$.

