Math 583B Spring 2012 Problem Set \#5

klin@math.arizona.edu
Due Friday, 4/6
Revised 4/3

Read Sects. 7.1-7.4 of the course notes.

Exercises. These do not need to be turned in.

1. Find the Green's function for

$$
\begin{aligned}
-u^{\prime \prime}(x)+u(x) & =f(x), \quad 0 \leq x \leq 1 \\
u(0)-u^{\prime}(0) & =0 \\
u(1) & =0 .
\end{aligned}
$$

2. One thing we have not discussed is what to do when there are nonzero (i.e., inhomogeneous) boundary conditions, i.e., when we want to solve $L u=f$ on $0 \leq x \leq \ell$, where

$$
L u=\left(p(x) u^{\prime}(x)\right)^{\prime}+q(x) u(x)
$$

and

$$
\begin{aligned}
& \alpha_{1} u+\alpha_{2} u^{\prime}=A \text { at } x=0 \\
& \beta_{1} u+\beta_{2} u^{\prime}=B \text { at } x=\ell
\end{aligned}
$$

where $(A, B) \neq(0,0)$. The standard method is to split the solution into two terms: a particular solution u_{p} solving $L u_{p}=f$ with the boundary conditions $A=B=0$, and a homogeneous solution u_{h} solving $L u_{h}=0$ with the given nonzero boundary conditions. By linearity, $u=u_{h}+u_{p}$ will solve the original problem.
(a) Suppose the boundary value problem above has a unique solution for every f, and let K denote the Green's function for L with homogeneous boundary conditions. Assume also the boundary conditions are such that $u(0), u(\ell) \neq 0$. correction Show, using the general properties of Green's functions, that every homogeneous solution can be expressed in the form

$$
u_{h}(x)=c_{1} K(x, 0)+c_{2} K(x, \ell) .
$$

Note: Since our general method for finding K relies on solving $L u=0$, this is really only useful if one already knows K by some other means.
(b) Solve, using whatever method is convenient,

$$
\begin{aligned}
-u^{\prime \prime}(x)+u(x) & =\cos (\pi x), \quad 0 \leq x \leq 1 \\
u(0)-u^{\prime}(0) & =1 \\
u(1) & =0
\end{aligned}
$$

Problems.

1. The method we used in class to derive a general expression for the Green's function for the Sturm-Liouville problem can be directly applied (i.e., without doing a SturmLiouville reduction) to general second-order problems of the form $L u=f$, where

$$
\begin{aligned}
& L u(x)=p_{2}(x) u^{\prime \prime}(x)+p_{1}(x) u^{\prime}(x)+p_{0}(x) u(x), \quad 0 \leq x \leq \ell \\
& \quad \alpha_{1} u+\alpha_{2} u^{\prime}=0 \text { at } x=0 \\
& \beta_{1} u+\beta_{2} u^{\prime}=0 \text { at } x=\ell
\end{aligned}
$$

Let K be the Green's function for L. You can assume the p_{i} are continuous, and $p_{2}(x)>0$ for all $x \in[0, \ell]$.
(a) What equations (including boundary conditions) does K satisfy?
(b) Derive a jump condition for K.
(c) Find a general expression for K in terms of two linearly indepenent solutions u_{1} and u_{2} of $L u=0$.
(d) Find the Green's function for the BVP

$$
\begin{aligned}
u^{\prime \prime}(x)-2 u^{\prime}(x)+u(x) & =f(x), \quad 0 \leq x \leq 1 \\
u(0) & =u(1)
\end{aligned}=0 .
$$

and use it to find an expression for u when $f \equiv 1$.
2. A self-adjoint operator L is positive if $\langle L u, u\rangle>0$ for all u in the domain of L with $\|u\|>0$.
(a) Let L be the Sturm-Liouville operator

$$
L u=-\left(p(x) u^{\prime}(x)\right)^{\prime}+q(x) u(x), \quad 0 \leq x \leq \ell
$$

acting on the space of functions satisfying the ustal boundary conditions Dirichlet correction boundary conditions

$$
u(0)=u(\ell)=0
$$

and with the standard inner product $\langle u, v\rangle=\int_{0}^{\ell} u(x) v(x) d x$. Show that if $q(x)>0$ for all x, then L is positive.
(b) Let K denote the Green's function for L, and suppose L is positive. Does it follow that $K(x, y)>0$ for all $x, y \in(0, \ell)$? Explain.
3. (a) Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and define the Laplacian operator Δ by

$$
\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} .
$$

Find the Green's function for Δ for all $n \geq 3$, assuming vanishing boundary conditions at ∞.
(b) Find the Green's function for Δ on the half space $\mathbb{R}^{2} \times[0, \infty)$.

