Math 583B Spring 2012 Problem Set \#6

klin@ math.arizona.edu
Due Wednesday, 4/18

Read Sects. 7.1-7.4 of the course notes.
Exercises. These do not need to be turned in.

1. Let L be a bounded operator on a Hilbert space H, and suppose $u, f \in H$ and $f \perp \operatorname{ker}\left(L^{*}\right)$. Show that $L u=f$ if and only if $L^{*} L u=L^{*} f .1$
2. Given an explicit solution if possible. If there is no solution, explain why. (You can assume x ranges over the interval of integration.)
(a)

$$
u(x)=1+\int_{0}^{1} \sinh (x-y) u(y) d y
$$

(b)

$$
u(x)=1+\int_{-1}^{1} e^{x^{2}+y^{2}} \sin (x) \sin (y) u(y) d y
$$

Problems.

1. In this problem, we will derive the Fredholm alternative for 2 nd-order boundary value problems of the form

$$
\begin{align*}
p_{2}(x) u^{\prime \prime}(x)+p_{1}(x) u^{\prime}(x)+p_{0}(x) u(x) & =f(x), 0 \leq x \leq 1 \\
\alpha_{1} u+\alpha_{2} u^{\prime} & =0 \text { at } x=0 \\
\beta_{1} u+\beta_{2} u^{\prime} & =0 \text { at } x=1 \tag{1}
\end{align*}
$$

For this problem, assume $p_{2}>0$, and that there exists a nonzero function u_{0} such clarified that $p_{2} u_{0}^{\prime \prime}+p_{1} u_{0}^{\prime}+p_{0} u_{0}=0$ and u_{0} satisifies the boundary conditions.
(a) Let's first derive a solvability condition via a Sturm-Liouville reduction. Recall that for a Sturm-Liouville problem

$$
\left(p u^{\prime}\right)^{\prime}+q u=g
$$

with the same boundary conditions as above, if there exists a nonzero u_{0} such that $\left(p u_{0}^{\prime}\right)^{\prime}+q u_{0}=0$, then the problem has solution if and only if $\left\langle u_{0}, g\right\rangle=$ 0 . (We showed this earlier by eigenfunction expansions.) Find a solvability condition (in terms of u_{0} and f) for the BVP in Eq. (1) by reduction to SturmLiouville form.

[^0](b) Next, we need to know something about the adjoint problem. Let $L u=p_{2} u^{\prime \prime}+$ $p_{1} u^{\prime}+p_{0} u$ acting on the space of functions satisfying the boundary conditions in Eq. (1). Note that there is no reason to think L is self-adjoint; consequently, the adjoint L^{*} may be defined on a space with boundary conditions different from L. (You may want to review Sect. 6.2.3 of the notes.) Show that $L^{*} v=\left(p_{2} v\right)^{\prime \prime}-\left(p_{1} v\right)^{\prime}+p_{0} v$, and find the associated boundary conditions.
(c) Show that the solvability condition you found earlier is equivalent to $f \perp$ $\operatorname{ker}\left(L^{*}\right)$. Hint: The solvability condition you found in (a) should have the form $\int_{0}^{1} f(x) v_{0}(x) d x=0$ for some function v_{0}. Show that $L^{*} v_{0}=0$ and that v_{0} satisfies the boundary conditions for L^{*}.
2. Let $k(x, y)=1+\sin (\pi x) \cos (\pi y)$, and define $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ by
$$
(K f)(x)=\int_{0}^{1} k(x, y) f(y) d y
$$
(a) Find all the eigenfunctions and eigenvalues of K, i.e., find all λ and $f \in L^{2}$ such that $K f=\lambda f$.
(b) Consider the equation
$$
u=\mu K u+f,
$$
where μ is a given number. Under what conditions on μ and f does this equation have a solution? When is the solution unique?

[^0]: ${ }^{1}$ When L is a matrix, this is just the normal equation from linear algebra.

