Math 583B Spring 2012 Problem Set \#7

klin@math.arizona.edu
Due Wednesday, 5/2
Revised 2012.05.01

Exercises. These do not need to be turned in.

1. Show that the identity operator I on the space $L^{2}([0,1])$ is not compact. Show directly that the identity operator I on any infinite-dimensional Hilbert space is not the limit (in the metric defined by the operator norm) of a sequence of finite-rank operators.
2. Let $k:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous kernel and define an integral operator K by

$$
(K f)(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

(a) Let $X=C([0,1])$ denote the space of continuous functions on the interval $[0,1]$, equipped with the sup norm $\|f\|=\max \{|f(x)|: 0 \leq x \leq 1\}$. Show that K is a bounded operator on X, and eompute the give an upper bound for the operator norm $\|K\|$.
(b) For a continuous f and any number λ with $|\lambda|$ sufficiently small, show that the Neumann series

$$
u=\sum_{n=0}^{\infty} \lambda^{n} K^{n} f
$$

converges uniformly.
(c) True or false: the Fredholm equation $u=f+\lambda K u$ has a finite dimensional solution space for all λ and all $f \in L^{2}([0,1])$? (Assume that solutions ulie in L^{2}.) For this part, you should assume that K is compact ${ }^{1}$
3. For any $f \subset L^{2}(\mathbb{R})$ and real number $a \in \mathbb{R}$, define the operator T_{a} by $\left(T_{a} f\right)(x)=f(x-a)$. Is T_{a} compact for any a? Justify your answer. For any $f \in L^{2}(\mathbb{R})$, define the operator T by $(T f)(x)=f(-x)$. Give two different reasons why T is not compact.
old version not good; this is slightly more interesting
4. For any vector field F on \mathbb{R}^{n}, find the differential equation satisfied by the path $x:[a, b] \rightarrow \mathbb{R}$ that minimizes

$$
\int_{a}^{b}\|\dot{x}(t)-F(x(t))\|^{2} d t
$$

where $\|\cdot\|$ denotes the standard Euclidean 2-norm. (This is known as the "Freidlin-Wentzell action" and arises in the theory of randomly-perturbed differential equations.)

[^0]
Problems.

1. The (idealized) spherical pendulum is a physical system consisting of a single particle of mass M constrained to be a fixed distance $\ell>0$ from the origin; the mass is otherwise allowed to move freely. The configuration space is thus the 2 -dim sphere of radius ℓ in \mathbb{R}^{3}, which can be parametrized by two angles (θ, φ) via spherical coordinates.
This problem is about a spherical pendulum in a constant, downward gravitational field (i.e., generated by the usual potential $V(x, y, z)=g z)$.
(a) Find a Lagrangian for this system.
(b) Find the corresponding equations of motion in spherical coordinates.
(c) What conserved quantities are implied by Noether's principle?
2. Our derivation of the Euler-Lagrange equations still works when there are >1 independent variables, as is the case for spatially-dependent problems. This problem concerns a twodimensional case.
Let Ω be a bounded open subset of \mathbb{R}^{2} and let $\partial \Omega$ denote the boundary of Ω. Define the functional

$$
F[u]=\iint_{\Omega} L\left(x, y, u(x, y), u_{x}(x, y), u_{y}(x, y)\right) d x d y
$$

where $u: \Omega \rightarrow \mathbb{R}$ is a smooth function. Our goal is to find the minimizer of F among all functions u subject to the Dirichlet boundary conditions

$$
u(x, y)=f(x, y), \quad(x, y) \in \partial \Omega
$$

where $f: \partial \Omega \rightarrow \mathbb{R}$ is a given (fixed) function.
(a) To derive the Euler-Lagrange equations for higher-dimensional problems, you will need the following generalization of integration by parts: let F be a vector field on Ω and h a scalar-valued function that vanishes on $\partial \Omega$. Show that

$$
\left.\begin{array}{rl}
\iint_{\Omega} & \operatorname{div}
\end{array} \quad[F(x, y) \cdot h(x, y)] d x d y\right)
$$

(b) Using the above, derive the Euler-Lagrange equation. Justify all your steps.
(c) What PDE do you get for the Lagrangian

$$
L(x, y, u, v, w)=v^{2}+w^{2} ?
$$

(d) (EXTRA CREDIT) Let $\Omega=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Express the Euler-Lagrange PDE you found in (c) in polar coordinates. Hint: This is different from the kind of change of variables we talked about in class: we are changing the independent variables here, not the dependent variables. This means there's a jacobian that arises when you change variables, which needs to be included as part of the "new" Lagrangian.
3. Let Ω be the unit disc in \mathbb{R}^{2}, and let h be a function defined on the unit circle $\partial \Omega$. Suppose u is the smooth function on Ω whose graph has minimal surface area among all functions that satisfy $u(x, y)=h(x, y)$ for $(x, y) \in \partial \Omega$. What equation does u satisfy?

[^0]: ${ }^{1}$ We know this is the case if K is viewed as an operator on $L^{2}([0,1])$. It is actually also true for K acting on continuous functions; the proof uses the Arzela-Ascoli theorem.

