Math 583A Fall 2011 Problem Set \#4

klin@math.arizona.edu
Due Thursday, 10/13 end of day on Friday, 10/14
Last revised: 2011.10.12

1. (a) Using principal value integrals, show that for k real,

$$
\int_{0}^{\infty} \frac{\cos (k x)-1}{x^{2}} d x=-\frac{\pi}{2}|k|
$$

(Note that $f(z)=\left(e^{i k z}-1\right) / z^{2}$ has a simple pole at $z=0$.)
(b) Let $k=2$. Deduce

$$
\int_{0}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x=\frac{\pi}{2}
$$

2. Use a semicircular contour enclosing the left half plane (with a suitable "keyhole" contour), show that

$$
\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} \frac{e^{z t}}{\sqrt{z}} d z=\frac{1}{\sqrt{\pi t}}
$$

for $a, t>0$. (This is the inverse Laplace transform of $1 / \sqrt{z}$.)
3. Evaluate using contour integrals:
(a) $\int_{0}^{\infty} \frac{(\log x)^{2}}{x^{2}+1} d x$
(b) $\int_{0}^{1} \sqrt{x(1-x)} d x$

Hint: Use a "dog-bone" contour, but be careful with the circular arc.
4. (a) Let $f(z)=\left(z-z_{0}\right)^{k}$, where k is an integer. Show that

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i k
$$

for any simple closed contour enclosing z_{0}. (Note that if $k>0, f$ has a single zero of order k at z_{0}, and if $k<0, f$ has a pole of order k at z_{0}.)
(b) Prove the argument principle: for any meromorphic f and any simple close contour C on which f has no zeros or poles,

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=N-P
$$

where N is the number of zeros of f enclosed by C, and P the number of poles. (Zeros and poles are counted with multiplicity, i.e., zeros of order 2 are counted twice, etc.)
(c) How many solutions of $z^{4}+8 z^{3}+3 z^{2}+8 z+3=0$ lie in the right half plane? (Suggestion: Apply the argument principle to a large half disc, and sketch the image of the imaginary axis show that the contribution of the imaginary axis is 0 .
Here's one way to do that:
(i) sketch the image of $i \mathbb{R}$ under the mapping f; then
(ii) show that one can pick a branch of $\log (z)$ so the branch cut doesn't intersect $f(i \mathbb{R})$. Check that this means the Fundamental Theorem of Calculus applies.)

