Math 583A Fall 2011 Problem Set \#5

klin@math.arizona.edu
Due Thursday, 10/27
Last revised: 2011.10.26

1. Some basic properties of Fourier coefficients. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a periodic function of period 2π with continuous derivatives up to order k, and let $\hat{f}(n)$ denote the nth Fourier coefficient of f. Show
(a) $\widehat{f^{(k)}}(n)=(i n)^{k} \cdot \widehat{f}(n)$
(b) $\hat{\bar{f}}(n)=\overline{\widehat{f}(-n)}$
(c) $\widehat{T_{a} f}(n)=e^{-i n a} \widehat{f}(n)$, where $\left(T_{a} f\right)(x)=f(x-a)$
(d) f is real-valued $\Leftrightarrow \widehat{f}(n)=\overline{f(-n)}$ for all n
(e) f is real-valued and even $\Leftrightarrow \widehat{f}(n) \in \mathbb{R}$ and $\widehat{f}(n)=\widehat{f}(-n)$ for all n
(f) f is real-valued and odd $\Leftrightarrow \widehat{f}(n) \in i \mathbb{R}$ and $\widehat{f}(n)=-\widehat{f}(-n)$ for all n

Note: Each of these should involve only a short calculation (I'm not looking for rigorous proofs here). Also, for (a), you can start with the integral for $\widehat{f^{(k)}}$ or with the series - up to you which way.
2. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be the step function

$$
f(x)= \begin{cases}-1, & x<0 \\ +1, & x>0\end{cases}
$$

(a) Find the Fourier coefficients of f.
(b) By applying the Parseval identity to f, show that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

(c) Using (b), show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

(In case you haven't seen this before and are curious, $\sum 1 / n^{4}=\pi^{4} / 90$. One way to calculate this sum is to repeat the above problem with $f(x)=|x|$, for which you can use Problem $\mathbb{1}$ a). With a little bit more work, you can find a recursion relation for $\sum 1 / n^{s}$ for even positive integers s; the sum is not known to have an explicit expression for any odd s.)

