Math 583A Fall 2011 Problem Set #6

klin@math.arizona.edu

Due Tuesday, 11/15

Last revised: 2011.11.14(* = corrected problems)

1. (\star) A linear inhomogeneous PDE. Find the Fourier series solution of the 2D PDE

$$u_{tt} = c^2(u_{xx} + u_{yy}) + \sin(y), \quad 0 \le x \le 1, \quad 0 \le y \le \pi$$

with homogeneous Dirichlet boundary conditions $u \equiv 0$ for $y \in \{0, \pi\}$, homogeneous Neumann conditions $u_x \equiv 0$ for $x \in \{0, 1\}$, and initial conditions $u(x, y, 0) = \cos(\pi x) \sin(3y)$ and $u_t(x, y, 0) = 0$. *Hint: It's easier to first think about how to match the boundary conditions term by term.*

2. Fourier representation of a nonlinear PDE. Consider the PDE

 $u_t + uu_x = \nu u_{xx}$, $u: [-\pi, \pi] \times \mathbb{R} \to \mathbb{R}$ with periodic boundaries.

Let $\widehat{u}_n(t)$ denote the *n*th Fourier coefficient of u(x,t) as a function of x, i.e.,

$$\widehat{u}_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(x,t) e^{-inx} dx .$$

Find a system of (infinitely many) coupled ODEs for $\widehat{u}_n(t)$.

- 3. Using complex variables to find Fourier series. There is another situation where Fourier series converge nicely (i.e., uniformly), namely when the function being expanded is analytic. Let F : C → C be analytic except for a countable number of singularities, none of which are on the circle {|z| = 1}. Then f(θ) = F(e^{iθ}) is clearly 2π-periodic and smooth.
 - (a) Suppose F has Laurent expansion $F(z) = \sum_{n=-\infty}^{\infty} C_n z^n$. Find $\widehat{f}(n)$.
 - (b) Compute the Fourier coefficients for

$$f(\theta) = \frac{1}{2 - \cos(\theta)} \,.$$

Hint: Let $z = e^{i\theta}$ and try to rewrite f as an analytic function in z.

4. (*) Using Cauchy-Schwartz, show that there is a constant C > 0 such that for all continuously-differentiable 2π -periodic $f : \mathbb{R} \to \mathbb{C}$,

$$|f(x) - \overline{f}| \le C ||f'||_{L^2([-\pi,\pi])}; \quad \overline{f} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx ,$$

for all x. (This problem illustrates a general principle that is often useful, namely that knowing the size of the derivative in an average (e.g., L^2) sense lets one obtain point-wise bounds on the value of a function.)

5. (*) *Gibbs phenomenon.* Let $f : \mathbb{R} \to \mathbb{R}$ be the periodic extension (with period 2π) of the step function

$$f(x) = \begin{cases} -1, & x < 0\\ +1, & x > 0 \end{cases}$$

(a) Show that

$$\lim_{N \to \infty} \left[f(x_{N,k}) - (S_N f)(x_{N,k}) \right] = 2 - \frac{2}{\pi} \int_{-\infty}^{\pi k} \frac{\sin(u)}{u} \, du \,, \tag{1}$$

where $x_{N,k} = 2k\pi/(2N+1)$.

(Note: I write the upper limit as $4k\pi$ before. Stupid error on my part.)

(b) Evaluate¹ Eq. (1) for k = 1, and compare it against a graph of the partial sum $S_N f$ for N = 10.

¹Any way you like, including numerical.