Math 583A Fall 2011 Problem Set \#6

klin@math.arizona.edu
Due Tuesday, 11/15
Last revised: 2011.11.14
($\star=$ corrected problems)

1. (\star) A linear inhomogeneous PDE. Find the Fourier series solution of the 2D PDE

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)+\sin (y), \quad 0 \leq x \leq 1, \quad 0 \leq y \leq \pi
$$

with homogeneous Dirichlet boundary conditions $u \equiv 0$ for $y \in\{0, \pi\}$, homogeneous Neumann conditions $u_{x} \equiv 0$ for $x \in\{0,1\}$, and initial conditions $u(x, y, 0)=\cos (\pi x) \sin (3 y)$ and $u_{t}(x, y, 0)=0$. Hint: It's easier to first think about how to match the boundary conditions term by term.
2. Fourier representation of a nonlinear PDE. Consider the PDE

$$
u_{t}+u u_{x}=\nu u_{x x}, \quad u:[-\pi, \pi] \times \mathbb{R} \rightarrow \mathbb{R} \text { with periodic boundaries. }
$$

Let $\widehat{u}_{n}(t)$ denote the nth Fourier coefficient of $u(x, t)$ as a function of x, i.e.,

$$
\widehat{u}_{n}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(x, t) e^{-i n x} d x
$$

Find a system of (infinitely many) coupled ODEs for $\widehat{u}_{n}(t)$.
3. Using complex variables to find Fourier series. There is another situation where Fourier series converge nicely (i.e., uniformly), namely when the function being expanded is analytic. Let $F: \mathbb{C} \rightarrow \mathbb{C}$ be analytic except for a countable number of singularities, none of which are on the circle $\{|z|=1\}$. Then $f(\theta)=$ $F\left(e^{i \theta}\right)$ is clearly 2π-periodic and smooth.
(a) Suppose F has Laurent expansion $F(z)=\sum_{n=-\infty}^{\infty} C_{n} z^{n}$. Find $\widehat{f}(n)$.
(b) Compute the Fourier coefficients for

$$
f(\theta)=\frac{1}{2-\cos (\theta)}
$$

Hint: Let $z=e^{i \theta}$ and try to rewrite f as an analytic function in z.
4. (\star) Using Cauchy-Schwartz, show that there is a constant $C>0$ such that for all continuously-differentiable 2π-periodic $f: \mathbb{R} \rightarrow \mathbb{C}$,

$$
|f(x)-\bar{f}| \leq C\left\|f^{\prime}\right\|_{L^{2}([-\pi, \pi])} ; \quad \bar{f}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

for all x. (This problem illustrates a general principle that is often useful, namely that knowing the size of the derivative in an average (e.g., L^{2}) sense lets one obtain point-wise bounds on the value of a function.)
5. (\star) Gibbs phenomenon. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic extension (with period 2π) of the step function

$$
f(x)= \begin{cases}-1, & x<0 \\ +1, & x>0\end{cases}
$$

(a) Show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left[f\left(x_{N, k}\right)-\left(S_{N} f\right)\left(x_{N, k}\right)\right]=2-\frac{2}{\pi} \int_{-\infty}^{\pi k} \frac{\sin (u)}{u} d u \tag{1}
\end{equation*}
$$

where $x_{N, k}=2 k \pi /(2 N+1)$.
(Note: I write the upper limit as $4 k \pi$ before. Stupid error on my part.)
(b) Evaluate ${ }^{1}$ Eq. (1) for $k=1$, and compare it against a graph of the partial sum $S_{N} f$ for $N=10$.

[^0]
[^0]: ${ }^{1}$ Any way you like, including numerical.

