Math 583A Fall 2011 Problem Set #8

klin@math.arizona.edu

Due end of day Wednesday, 12/7

Last revised: 2011.12.03

- 1. Let $U = \frac{1}{\sqrt{2\pi}} \mathcal{F}$, i.e., U is a rescaled version of the Fourier transform. For any function¹ f, compute $U^4 f$.
- 2. Find the Fourier transforms:
 - (a) sinc * g, where $g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ and where sinc(x) = sin(x)/x
 - (b) xg(x) (g as above)
 - (c) sinc^2
 - (d) $s_a * \operatorname{sinc}$, where $s_a(x) = \cos(ax)$
 - (e) $\frac{1}{1+x^4}$

(f)
$$x^2 \operatorname{sinc}(\mathbf{x})$$

- 3. Using properties of the Fourier transform, evaluate
 - (a) $PV \int_{-\infty}^{\infty} \operatorname{sinc}(\mathbf{x}) d\mathbf{x}$
 - (b) $\int_{-\infty}^{\infty} \operatorname{sinc}(\mathbf{x})^4 \, \mathrm{d}\mathbf{x}$

¹For this problem, you can assume the function is Schwartz, so that the Fourier transform can be iterated. However, note as I explained in class, the Fourier transform extends naturally to L^2 , and hence (because Schwartz functions are dense in L^2) your result will hold for L^2 functions as well.