The analogy between Fourier series representations and coordinates relative to orthogonal bases suggests various interesting and useful identities. Here is one such identity. Please write up #1 & 2 and turn them in. #3 is optional: do it if you are curious, and whenever you have time.

1. Let x be any vector in \mathbb{C}^n and (v_1, \ldots, v_n) be an orthogonal basis of \mathbb{C}^n with the property that $||v_n|| = 2$ for all n. Let (c_1, \ldots, c_n) denote the coordinates of x relative to the basis (v_1, \ldots, v_n). Show that $||x||^2 = K \sum_{k=1}^{n} |c_k|^2$ for some constant K. What is the value of K?

 Hint: $||x||^2 = (x, x)$; use this and the orthogonality of the basis.

2. Let f and g be two functions, and define (as we did in class)

 $$(f, g) = \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx.$$ (1)

 Define $||f|| = \sqrt{(f, f)}$, and also

 $$v_n(x) = e^{inx}.$$ (2)

 As we discussed in class on Monday, the functions v_n are “orthogonal” to each other in the sense that

 $$(v_m, v_n) = \int_{-\pi}^{\pi} e^{imx} \overline{e^{inx}} \, dx
 = \int_{-\pi}^{\pi} e^{inx} e^{-inx} \, dx
 = \left\{ \begin{array}{cl} 0, & m \neq n \\ 2\pi, & m = n \end{array} \right.$$

 Using this, show that

 $$||f||^2 = K \sum_{n=-\infty}^{\infty} |c_n|^2$$ (3)

 for some constant K. What is the value of K?

 (In many physical problems, $||f||^2$ can be interpreted as the energy per unit time contained in a wave, and Eq. (3) shows that the energy can be expressed in terms of the Fourier coefficients directly.)

3. Let f be the function

 $$f(x) = \left\{ \begin{array}{cl} 1, & 0 < x < \pi \\ -1, & -\pi < x < 0 \end{array} \right.$$ (4)

 We showed in class that $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$ with

 $$c_n = \left\{ \begin{array}{cl} 0, & n \text{ even} \\ \frac{2i\pi n}{\pi^2}, & n \text{ odd} \end{array} \right.$$ (5)

 Apply the two sides of Eq. (3) to the Fourier series $f(x)$ above to find an explicit expression for $\sum_{n=-\infty}^{\infty} |c_n|^2$.