These are practice problems for Fourier transforms. I will not collect these, but will post solutions before the final.

Note the first one is the example from class today (Monday 5/4).

1. Let \(g \) be the function

\[
g(x) = \begin{cases}
1, & 0 \leq x \leq 1 \\
-1, & -1 \leq x \leq 0 \\
0, & \text{otherwise}
\end{cases}
\]

(a) Sketch \(g \).

(b) Let

\[
f(x) = \begin{cases}
1, & -1 \leq x \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

Express \(g \) in terms of \(f \) via scaling, shifting, and linear combinations. Hint: let \(g_+ \) be the “right half” of \(g \), and \(g_- \) the left half. Show that each of \(g_+ \) and \(g_- \) can be obtained from \(f \) by scaling, then shifting. Or shifting, then scaling – you can do it in either order.\(^1\)

(c) Find \(\hat{g}(\omega) \).

(d) Try to do the same for

\[
g(x) = \begin{cases}
2, & 1 \leq x \leq 2 \\
-3, & -1 \leq x \leq 0 \\
0, & \text{otherwise}
\end{cases}
\]

2. Consider the differential equation

\[-u''(x) + u(x) = f(x)\]

where \(-\infty < x < \infty\) and we assume \(u, f \) have well-defined Fourier transforms.

(a) Find \(\hat{u}(\omega) \) in terms of \(\hat{f}(\omega) \).

(b) By taking inverse Fourier transforms, express \(u(x) \) as a convolution \((K * f)(x)\). What is the function \(K \)? Hint: see the solution to Problem 4 on Exam 3.

\(^1\)If you scale, then shift, you would get \(g_+(x) = f(2(2 - \frac{1}{2})) \). If you shift, then scale, you get \(g_+(x) = f(2x - 1) \).

\(^2\)As an example, if you get \(g_+ \) from \(f \) by shifting then scaling, you would have \(g_+(x) = f(2x - 1) \). The two operations can be represented symbolically as

\[g_+ = \text{Scale(Shift}(f)).\]

From this, we have

\[
\mathcal{F}(g_+) (\omega) = \mathcal{F} (\text{Scale(Shift}(f)))) (\omega) \\
= \frac{1}{2} \mathcal{F} (\text{Shift}(f))(\omega/2) \\
= \frac{1}{2} e^{-i\omega/2} \mathcal{F}(f)(\omega/2).
\]
3. The Fourier transform of

\[f(x) = \sqrt{\frac{2}{\pi}} \frac{\sin(x)}{x} \]

is

\[\hat{f}(\omega) = \begin{cases} 1, & -1 \leq \omega \leq 1 \\ 0, & \text{otherwise} \end{cases} \]

(You can derive this by noticing that the Fourier transform of \(f \) is the same as its inverse Fourier transform, because \(f \) is even.) Assuming this fact, answer the following questions:

(a) Let \(g(x) \) be a function such that \(\hat{g}(\omega) = 0 \) for \(|\omega| < 1 \). What can you say about the Fourier transform of \(f \ast g \)?

(b) Let \(g(x) \) be a function such that \(\hat{g}(\omega) = 0 \) for \(|\omega| > 1 \). What can you say about the Fourier transform of \(f \ast g \)?