Math 129 Sect. 20

Midterm 2 Practice Problems
Oct. 9, 2007

- Sect. 7.8 Improper Integrals: 1, 3, 8, 13, 19, 23, 34
- Sect. 8.1 Areas \& Volumes: 7, 15, 20
- Sect. 8.2 Geometry: 3, 5, 11, 17, 29, 33
- Sect. 8.4 Density and Center of Mass: 3, 9, 11, 13, 21
- Sect. 8.5 Work, pressure, etc.: 5, 7, 11, 17, 23, 27
- Sect. 9.1 Sequences: $1,3,5,7,9,11,13,15,17,23,25,27,29,31,49,53$
- Sect. 9.2 Geometric Series: 1, 3, 5, 9, 25, 28

Problem. The half life of a drug in the human body is 6 hours. That is, if a patient is given 20 mg of the drug, only 10 mg will remain in her system after 6 hours.

1. Assume that t hours after one dose of $A \mathrm{mg}$, the amount of drug which remains is $A e^{-b t}$. Find the value of b.
2. Suppose the patient is given $A \mathrm{mg}$ of the drug every T hours. Let Q_{n} be the amount in her body just after the nth dose. Find a recursion relation for Q_{n} in terms of Q_{n-1}, A, and T. (You will need the value of b you found above.)
3. Let Q_{n} be as above. Find an explicit expression for Q_{n}. That is, find Q_{n} in terms of just n, A, and T.
4. After a large number of doses, the amount Q_{n} will approach the limit $Q=\lim _{n \rightarrow \infty} Q_{n}$. Find an expression for Q in terms of A and T.
5. It is dangerous for anyone to have more than 100 mg of the drug in their system at any given time. If the amount A we administer each time is 20 mg , and if we want to make sure that the limiting amount is $Q=50 \mathrm{mg}$ (so the patient does not overdose), how often should we administer the drug? Hint: in your answer from Part 4, set $A=20$ and $Q=50$, and solve for T.
