Continuity & Differentiability

(continued)

if \[\lim_{\delta \to 0} |f(x) - f(x_0 + \delta)| = 0 \]
then \(f \) is continuous at \(x_0 \)

if \[\lim_{\delta \to 0} \left[\frac{f(x_0 + \delta) - f(x_0)}{\delta} \right] \text{ exists} \quad (= f'(x_0)) \]
then \(f \) is differentiable at \(x_0 \)

Look at \[\frac{f(x)}{x} = \frac{x}{x} = 1 \]

Look at \[\left| \frac{f(x)}{x^2} \right| \to \infty \quad \text{as} \quad x \to 0 \]

Ex. Take \(f(x) = x \)
As \(x \to 0 \), \(f(x) \to 0 \)

Take \(f(x) = x^2 \)
As \(x \to 0 \), \(f(x) \to 0 \)

\[y \]

\[f(x) \]

\[x \]

\[x_0 \]

\[x_0 + \delta \]

\[x \]
Mean-value theorem: If f is (continuous and differentiable on $[a, b]$, then there exists a value c, $a \leq c \leq b$ such that

$$f'(c) = \frac{f(b) - f(a)}{b-a}$$

Local & Global Extrema

Definition: A point x_0 is a global maximum of a function f if $f(x_0) \geq f(x)$ for every x in the domain of definition of f.

It is possible for a function to have a local minimum at $x=0$ but not have $f'(x) = 0$.

Ex: $|x|$, $f(x) = x$ on $[0, 1]$.

It is possible to have \(f'(x_0) = 0 \) and \(x_0 \) not being a maximum or local minimum of \(f \).

\[
\text{Ex: } f(x) = x^3 \quad \text{at } x = 0
\]
\[
f'(x) = 3x^2 \quad f'(0) = 0
\]

\[
y = f(x) = x^3
\]

\[\begin{array}{c}
\text{It is possible for } f''(x_0) \text{ to be 0 and for } f \text{ not to have an inflection point at } x_0 \\
\text{Ex: } f(x) = x^4 \text{ at } x = 0
\end{array}\]
\[
f'(x) = 4x^3 \quad f''(x) = 12x^2 \quad f''(0) = 0\]