Equations of the form \(y = g(t) \)

1. **Existence**

 (a) \(|t-t_0| \leq a \iff -a \leq t - t_0 \leq a \)

 \(\iff t_0 - a \leq t \leq t_0 + a \)

 Saying that \(|t-t_0| \leq a \) is the same as saying that \(t \in [t_0 - a, t_0 + a] \)

 \[
 \begin{array}{ccc}
 t_0 - a & \rightarrow & t_0 + a
 \end{array}
 \]

 Saying that \(|t-t_0| \leq a \) \& \(|y-y_0| \leq b \)

 is the same as saying that the point with coordinates \((t, y)\) is in the rectangle

 \[
 \begin{array}{c}
 t_0 - a \leq t \leq t_0 + a \\
 y_0 - b \leq y \leq y_0 + b
 \end{array}
 \]
If \(g \) is continuous on the rectangle \(R \), then there will exist at least one solution satisfying \(y(t_0) = y_0 \).

2. **Uniqueness**

Assume \(g(y) = y \)

\[|g(y_1) - g(y_2)| = |y_1 - y_2| \]

Lipschitz with \(k \geq 1 \).
Assume \(g(y) = y^2 \)

\[
\begin{align*}
|g(y_1) - g(y_2)| &= |y_1^2 - y_2^2| \\
&= |y_1 - y_2| / |y_1 + y_2|.
\end{align*}
\]

\[
|y_1 + y_2| \leq |y_1| + |y_2|
\]

\[
\begin{array}{c}
\text{In } [y_0 - b, y_0 + b], \ |y| \text{ is bounded} \\
\text{say by } a \text{ constant } C
\end{array}
\]

Then,

\[
|g(y_1) - g(y_2)| = \frac{|y_1 - y_2|}{|y_1 + y_2|} \leq \frac{C}{|y_1 - y_2|}.
\]

Recall

\[
\lim_{y_1 \to y_2} \frac{|g(y_1) - g(y_2)|}{|y_1 - y_2|} = |g'(y_2)|
\]
If \(g'(y) \) is continuous on \(\mathbb{R} \), then the solution that goes through \(y(t_0) = y_0 \) is unique.

Example: \(g(y) = \sqrt{|y|} \)

\[\begin{array}{c}
\text{This function is continuous, so there is a solution to } y' = \sqrt{|y|} \text{ such that } y(3) = 0.
\end{array} \]

1. **Is it unique?**

 Look at \(\frac{d}{dy} g(y) = \frac{d}{dy} \left(\sqrt{|y|} \right) \)

 For \(y > 0 \) \(g'(y) = \frac{d}{dy} \sqrt{y} = \frac{1}{2\sqrt{y}} = g'(y) \)

 For \(y < 0 \) \(g'(y) = \frac{d}{dy} \sqrt{-y} = g'(y) = \frac{-1}{2\sqrt{-y}} \)
Let us try to solve \(y' = \sqrt{y'} \) \((y > 0) \)

\[\frac{dy}{\sqrt{y'}} = dt \Rightarrow 2\sqrt{y'} = t + C \]

\[\Rightarrow \sqrt{y'} = \frac{t + C}{2} \]

\[\Rightarrow y = \left(\frac{t + C}{2} \right)^2 = \left(\frac{t}{2} + \frac{C}{2} \right)^2 \]

Set \(y(0) = 0 \) so

\[0 = \left(\frac{0}{2} + C \right)^2 \Rightarrow C = -\frac{3}{2} \]

Thus, \(y(t) = \left(\frac{t - 3}{2} \right)^2 \)

However, \(y(t) = 0 \) also satisfies \(y' = \sqrt{y'} \)

and \(y(3) = 0 \).