Newton’s law: for an object moving in one dimension

\[F = m \gamma = m \frac{dv}{dt} , \]

where \(F \) is the sum of forces applied along the positive \(x \) direction, \(m \) is the mass of the object, \(x \) is the position of its center of mass, and \(v = \frac{dx}{dt} \) is its velocity.

- If the only force is gravity, then \(F = -mg \) if \(x \) points upward in the vertical direction. In this case, we have

\[\frac{dv}{dt} = -g , \]

which is solved by direct integration.

Objects in motion (continued)

- In the presence of gravity and friction, we typically have
 - \(F = -mg - cv, \) \(c > 0, \) if the object is moving slowly.
 - \(F = -mg + cv^2, \) \(c > 0, \) if \(|v| \gg 1, \) \(v < 0. \)
 - It is possible to have other types of friction forces, especially in the case of solid friction.

- If we restrict ourselves to the above examples, we have
 - \(\frac{dv}{dt} = -g - \frac{c}{m} v, \) which is linear in \(v. \)
 - \(\frac{dv}{dt} = -g + \frac{c}{m} v^2, \) which is separable.

- For a spring-mass system, we have \(F = -k(x - x_0), \) \(k > 0. \)
 Then, \(m \frac{d^2x}{dt^2} = -k(x - x_0), \) which is a second order, linear equation.

Mixture problems

- These problems typically involve a fluid, of volume \(V(t), \) in which a substance is dissolved. The goal is to find the amount \(A(t) \) or the concentration \(C(t) = A(t)/V(t) \) of the substance in the fluid.

- The general way of addressing such a problem is to write a balance equation for the amount \(A(t) \) of the substance in the fluid,

\[\frac{dA}{dt} = \text{input rate} - \text{output rate} \]

- Example (#5 page 207): Take a 200-gallon container filled with pure water. Add a salt concentration with 3 pounds of salt per gallon, at a rate of 4 gallons per minute. At the same time, drain the container at a rate of 5 gallons per minute. Find the amount of salt in the container as a function of time.
Cooling and heating

- Newton’s law of cooling and heating says that the rate of change of the temperature T of an object is a linear function of the difference between T and the ambient temperature T_0:
 $$\frac{dT}{dt} = -k(T - T_0), \quad k > 0.$$

- This equation can be solved as a linear equation, or as a separable equation, to find
 $$T(t) = T_0 + \kappa \exp(-kt),$$
 where κ is an arbitrary constant.
- As expected, $T \to T_0$ as $t \to +\infty$.

Compounding interest

- If money in a bank account is compounded continuously at a rate of r percents per year, then in the absence of deposits or withdrawals, we have
 $$\frac{dM}{dt} = \frac{r}{100} M,$$
 where M is the account balance and t is time measured in years.
- The above equation describes the exponential growth of M.
- After one year, the amount of money in the account is given by
 $$M(1) = \exp\left(\frac{r}{100}\right) M(0).$$
- The annual interest rate is therefore larger than $r/100$, since
 $$APY = \exp\left(\frac{r}{100}\right) - 1.$$

Population dynamics

- If N is the population density of a region, then one can write
 $$\frac{dN}{dt} = bN - dN + \text{immigration} - \text{emigration},$$
 assuming that resources are not limited.
- In the above equation, b is the birth rate, and d is the death rate of the population. The growth rate r of the population is given by
 $$r = b - d.$$
- If immigration and emigration are given functions of t, then the above equation is linear in N.

Population dynamics (continued)

- If a population is growing exponentially at rate $r > 0$, we can define its doubling time
 $$T_d = \frac{\ln(2)}{r}.$$
- Note the analogy with the half-life of a substance decaying exponentially at rate $r < 0$,
 $$T_{1/2} = -\frac{\ln(2)}{r} = \frac{\ln(2)}{|r|}.$$
- If resources are limited, one can expect that r will depend on N. With $r = \alpha - \beta N$, $\alpha > 0$, $\beta > 0$, and in the absence of immigration or emigration, we have logistic growth
 $$\frac{dN}{dt} = \alpha N - \beta N^2.$$
Chemical reactions

- For a chemical reaction of the form $A + B \xrightleftharpoons[k_2]{k_1} C$, the law of mass action says that

$$\frac{d[C]}{dt} = k_1[A][B] - k_2[C],$$

where $[X]$ is the concentration of chemical X and k_1 and k_2 are the forward and backward rate constants respectively.

- For an autocatalytic reaction of chemical X, one may have

$$\frac{d[X]}{dt} = k_1a[X] - k_2[X]^2,$$

where a, k_1, and k_2 are constants. This is again the logistic equation.