Calculus and Differential Equations II MATH 250 B

Series expansions and linear combinations

Taylor polynomials

Recall that the Taylor polynomial of degree n, centered at x = a, of a function f is given by

$$P_n(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a).$$

The figure on the left shows the graphs of cos(x) and of its Taylor polynomials of degree up to 8, near x = 0.

► Link to d'Arbeloff Taylor Polynomials software

Taylor polynomials (continued)

$$P_n(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \cdots + \frac{(x-a)^n}{n!}f^{(n)}(a).$$

• Recall that the error R_n made by replacing f by its Taylor polynomial P_n is such that

$$f(x) = P_n(x) + R_n(x), \quad R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi), \quad \xi \in (a,x).$$

- A Taylor polynomial may be viewed as the partial sum of a power series. If the function f is infinitely differentiable, it is natural to ask what happens to P_n as $n \to \infty$.
- We define the Taylor series of a smooth function f near x = a as

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Taylor series

- Since a Taylor series is a power series, it has an interval of convergence.
- Example 1: Find the Taylor series of arctan(x) near x = 0 and find its radius of convergence.
- Example 2: The binomial series is the Taylor series for $(x+1)^p$ near x=0. Find its radius of convergence.
- Taylor series may be found by substituting a Taylor series into another one.
- Example 3: Find the Taylor series of $cos(x^2)$ and of $e^x cos(x)$.
- Taylor series may also be found by differentiation and by integration.
- Example 4: Find the Taylor series of arctan(x) using term-by-term integration.

Expansions of functions onto other functions

- Taylor series provide an example of how a smooth function can be expanded onto a family of functions, in this case polynomials.
- The resulting infinite expansion is only valid in the interval of convergence of the series.
- Another way of looking at this is as follows: given a smooth function f, one may ask whether it is possible to write f as an infinite linear combination of functions in the set $\{1, x, x^2, x^3, \dots x^n, \dots\}$.
- The Taylor series of f near x = 0, together with the associated interval of convergence, provide an answer to this question.

Expansions of functions onto other functions (continued)

- The one-dimensional wave equation models the 2-dimensional dynamics of a vibrating string which is stretched and clamped at its end points (say at x = 0 and x = L).
- The function u(x, t) measures the deflection of the string and satisfies

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad c^2 \propto T, \ T \equiv \text{tension of the string}$$

with Dirichlet boundary conditions

$$u(0,t) = u(L,t) = 0,$$
 for all $t \ge 0$.

In what follows, we assume that the initial conditions are

$$u(x,0) = f(x), \quad u_t(x,0) \equiv \frac{\partial u}{\partial t}(x,0) = g(x), \quad \text{for } x \in [0, L].$$

Expansions of functions onto other functions (continued)

- The figure on the left shows a MATLAB GUI that describes the dynamics of an elastic string in the absence of damping.
- The simulation reproduces many features observed in experiments.

Expansions of functions onto other functions (continued)

 Solving the wave equation with the above initial and boundary conditions gives solutions of the form

$$u(x,t) = \sum_{n=1}^{\infty} C_n(t) \sin\left(n \frac{\pi x}{L}\right),\,$$

where the coefficients $C_n(t)$ are functions of time that can be calculated.

- In other words, the solution to the wave equation can be written as an infinite sum of sine functions. This is a form of Fourier series expansion.
- You will learn how to solve the wave equation if you take a course on partial differential equations, such as MATH 322, MATH 422, or MATH 456.

Linear combinations

• A linear combination of the n functions f_1, f_2, \dots, f_n is an expression of the form

$$c_1 f_1 + c_2 f_2 + \cdots + c_n f_n$$

where the c_i 's are scalars.

- A Taylor series near x=0 may thus be viewed as an infinite linear combination of the functions in $\{1, x, x^2, x^3, \dots x^n, \dots\}$.
- A set of functions $\{f_1, f_2, \dots, f_n\}$ is linearly independent if the only linear combination equal to zero is such that all of the coefficients are equal to zero. In other words, $\{f_1, f_2, \dots, f_n\}$ is linearly independent if and only if

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x
 $\implies c_1 = c_2 = \dots = c_n = 0.$

Linear independence

- Example 1: Are x and x^2 linearly independent functions?
- Example 2: Are cos(x) and sin(x) linearly independent functions?
 - Yes
 - O No
- Example 3: Are e^x and e^{-x} linearly independent functions?
 - Yes
 - O No
- Example 4: Is the set $\{1, x, x^2, (1+x)^2\}$ linearly independent?
 - Yes
 - No

Taylor series and differential equations

- For an equation of the form y' = g(x), if we cannot find an antiderivative of g, we may still get its Taylor series expansion near say x = 0 by integrating the Taylor series of g term by term.
- Example: Find the Taylor series of the error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) \, dt,$$

near x = 0.

- We can also find solutions to an equation of the form y' = g(x, y) by substituting a series for y and looking for a recursion relation between the coefficients of the series.
- Example: Solve y' = 2x y with initial condition y(0) = 1.

Deformations of an elastic string

Slow motion video downloaded from the *Waves on a String* page at the University of Salford.

