Second Order ODEs - Review Problems

April 13, 2009

1. Find a particular solution to
\[x^5 y'' + 3xy' + 7y = 14. \]

2. Consider the following equation
\[\frac{d^2x}{dt^2} + 25x = 16 \cos(3t). \]

 (a) Find the general solution of this equation.

 (b) Show that the particular solution satisfying \(x(0) = 0 \) and \(\dot{x}(0) = 0 \) is \(x_p(t) = \cos(3t) - \cos(5t) \).

 (c) Using the identity \(\cos(3t) - \cos(5t) = 2 \sin(4t) \sin(t) \), sketch the graph of the particular solution found in (b) for \(0 \leq t \leq 2\pi \).

3. Solve the differential equation
\[y'' + 6y' + 9y = \frac{1}{x} e^{-3x}. \]

4. Answer the following questions about the solution \(x(t) \) to the damped equation
\[m\ddot{x} + k\dot{x} + hx = 0, \]
where \(m, k \) and \(h \) are positive constants.

 (a) If \(m = 2 \), how should \(h \) and \(k \) be related so that the non-zero solutions are oscillatory?

 (b) If \(h = k = 1 \), how should the mass \(m \) be chosen so that all non-zero solutions will oscillate?

 (c) If \(m = h = 1 \), how should \(k \) be chosen so that \(x(t) \) is oscillatory?
5. Solve the differential equation

\[y'' - 3y' + 2y = -\frac{e^{2x}}{e^x + 1}. \]

Hint: \(1/(e^t + 1) \) can be integrated by noticing that it is equal to \(e^{-t}/(1 + e^{-t}) \).

6. (a) Find a particular solution to the equation

\[\frac{d^2 x}{dt^2} + 22x = \cos(\gamma t), \]

where \(\gamma > 0 \). Note that your answer should depend on \(\gamma \). For what value of \(\gamma \) is there resonance?

(b) Find a particular solution \(x_p(t) \) to

\[\frac{d^2 x}{dt^2} + 6\frac{dx}{dt} + 22x = \cos(\gamma t). \]

What is the value of \(x_p \) at \(t = \pi/(2\gamma) \)? Sketch the behavior of this value as a function of \(\gamma \). What happens when \(\gamma = \sqrt{22} \)?

7. Solve the differential equation

\[y'' + 2y' + y = \frac{2}{x^2}e^{-x}. \]