We start with:

\[m\ddot{x} + b\dot{x} + kx = 0 \quad m, b, k > 0 \quad \dot{x} = \frac{dx}{dt} \text{ and } \ddot{x} = \frac{dv}{dt} \]

From physics we know \(F = ma \) and since \(a = \ddot{x} \) this becomes \(F = m \ddot{x} \) and in a spring, which is the case we investigated, \(F = -kx \)

Looking at the homogeneous case of this would give us:

\[m\ddot{x} + kx = 0 \quad \text{and} \quad x(t) = A \cos(\omega t + \varphi) \]
\[-\omega^2 A \cos(\omega t + \varphi) = -\frac{k}{m} A \cos(\omega t + \varphi) \]
\[\omega = \sqrt{\frac{k}{m}} \text{ and this is the Resonant frequency} \]

Now we go to the Non-homogeneous case.

\[m\ddot{x} + kx = F(t) = F_0 \cos(\omega t) \text{ but this time } x(t) = B \cos(\omega t) \]
\[-\omega^2 m B \cos(\omega t) + k B \cos(\omega t) = F_0 \cos(\omega t) \]
\[B(-\omega^2 m + k) = F_0 \text{ the cosines cancel and B factors} \]
\[B = \frac{F_0}{-w^2 m + k} = \frac{F_0}{-w^2 m + k} = \frac{F_0}{Bm(k - \frac{w^2}{m})} = \frac{F_0}{Bm(w_0^2 - w^2)} \]

Now looking at the graphs

Graph 1:
- \(B = \frac{F_0}{k} \)
- \(\omega = \sqrt{\frac{k}{m}} \)

Graph 2:
- \(x(t) = k \cos(\omega t + \varphi) \)
- \(\varphi = \pi \)
- \(w_0 \)
- \(\omega \)

Natural Frequency
Now we look again at the equation

\[m\ddot{x} + kx = F(t) = F_0 \cos(\omega t) \] but this time \(x(t) = Be^{\lambda t} \)

\[\lambda = \frac{-b \pm \sqrt{b^2 - 4(m)(k)}}{2m} \]

Look at the particular solution

\[z(t) = Ae^{i(\omega t - \delta)} \quad \dot{z} = Ai\omega e^{i(\omega t - \delta)} \quad \ddot{z}(t) = -A\omega^2 e^{i(\omega t - \delta)} \]

We plug these back into the equation to get

\[-mA\omega^2 e^{i(\omega t - \delta)} + bAi\omega e^{i(\omega t - \delta)} + kAe^{i(\omega t - \delta)} = F_0 e^{i\omega t} \]

Simplifying gives us the equation

\[F_0 = Ae^{-\delta t}[-m\omega^2 + bi\omega + k] \]

\[A(\omega) = \frac{F_0}{m} \]

\[\delta = \tan^{-1}\frac{b\omega}{m(\omega_0^2 - \omega^2)} \]

These are the graphs for the above 2 equations

This all can also be used for understanding of electrical concepts since mechanical and electrical have a very close correlation. Many terms can be related between the two.

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Volts</td>
</tr>
<tr>
<td>Velocity</td>
<td>Current</td>
</tr>
<tr>
<td>Distance</td>
<td>Charge</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Resistance</td>
</tr>
<tr>
<td>(k)</td>
<td>Capacitor</td>
</tr>
<tr>
<td>Mass</td>
<td>L (Inductor)</td>
</tr>
</tbody>
</table>