1. Consider the following differential equation:

 $\frac{dx}{dt} = \lambda \ x - \gamma \ x^3$

- a. What is the dimension of λ ?
- b. What is the dimension of γ ? Your answer should be in terms of the dimension of *x*, [*x*].
- c. Let t_0 be a characteristic time scale for this problem. Define a dimensionless time variable $\tau = t / t_0$, and show that you can change variables from *t* to τ , to "get rid" of the parameter λ .
- d. Can you find a change of variable that would allow you to "get rid" of γ as well?
- 2. The force of gravity between two bodies of mass m_1 and m_2 has intensity $F = G \frac{m_1 m_2}{r^2}$, where r is the distance between the centers of mass of the two bodies,

and G is the gravitational constant.

- a. Use this formula to show that for an object of mass *m* at the surface of the Earth, one can approximate the force *F* by $F \cong m g$, where the acceleration of gravity *g* is constant.
- b. Express g in terms of G, the mass M of the Earth, and the radius R of the Earth.
- 3. Consider a smooth function f(x), and its expansion near $x = x_0$,

 $\sum_{i=0}^{n} f^{(i)}(x) \frac{(x-x_0)^i}{i!} + f^{(n+1)}(\overline{x}) \frac{(x-x_0)^{n+1}}{(n+1)!} \text{ where } \overline{x} \in [x_0, x], \text{ and call } E_n(x) \text{ the error made}$

by approximating f with its Taylor expansion truncated to order n,

$$E_n(x) = f(x) - \sum_{i=0}^n f^{(i)}(x) \frac{(x - x_0)^i}{i!}.$$

- a. Apply this formula to f(x) = cos(x), with $x_0 = 0$ and n = 5.
- b. Find a condition on |x| which ensures that $|E_n(x)| < 0.05$.
- c. Use a calculator or Matlab to check your answer to the previous question.