1. Consider the following differential equation:
$\frac{d x}{d t}=\lambda x-\gamma x^{3}$
a. What is the dimension of $\lambda$ ?
b. What is the dimension of $\gamma$ ? Your answer should be in terms of the dimension of $x,[x]$.
c. Let $t_{0}$ be a characteristic time scale for this problem. Define a dimensionless time variable $\tau=t / t_{0}$, and show that you can change variables from $t$ to $\tau$, to "get rid" of the parameter $\lambda$.
d. Can you find a change of variable that would allow you to "get rid" of $\gamma$ as well?
2. The force of gravity between two bodies of mass $m_{1}$ and $m_{2}$ has intensity $F=G \frac{m_{1} m_{2}}{r^{2}}$, where $r$ is the distance between the centers of mass of the two bodies, and $G$ is the gravitational constant.
a. Use this formula to show that for an object of mass $m$ at the surface of the Earth, one can approximate the force $F$ by $F \cong m g$, where the acceleration of gravity $g$ is constant.
b. Express $g$ in terms of $G$, the mass $M$ of the Earth, and the radius $R$ of the Earth.
3. Consider a smooth function $f(x)$, and its expansion near $x=x_{0}$, $\sum_{i=0}^{n} f^{(i)}(x) \frac{\left(x-x_{0}\right)^{i}}{i!}+f^{(n+1)}(\bar{x}) \frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!}$ where $\bar{x} \in\left[x_{0}, x\right]$, and call $E_{n}(x)$ the error made by approximating $f$ with its Taylor expansion truncated to order $n$, $E_{n}(x)=f(x)-\sum_{i=0}^{n} f^{(i)}(x) \frac{\left(x-x_{0}\right)^{i}}{i!}$.
a. Apply this formula to $f(x)=\cos (x)$, with $x_{0}=0$ and $n=5$.
b. Find a condition on $|x|$ which ensures that $\left|E_{n}(x)\right|<0.05$.
c. Use a calculator or Matlab to check your answer to the previous question.
