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We present a new algorithm for the numerical solution of problems of acoustic
scattering by surfaces in three-dimensional space. This algorithm evaluates scattered
fields through fast, high-order solution of the corresponding boundary integral equa-
tion. The high-order accuracy of our solver is achieved through use ofpartitions of
unity together withanalyticalresolution of kernel singularities. The acceleration, in
turn, results from use of a novel approach which, based on high-order“two-face”
equivalent sourceapproximations, reduces the evaluation of far interactions to evalu-
ation of 3-D fast Fourier transforms (FFTs). This approach is faster and substantially
more accurate, and it runs on dramatically smaller memories than other FFT and
k-space methods. The present algorithm computes one matrix-vector multiplication
in O(N6/5 log N) to O(N4/3 log N) operations, whereN is the number of surface
discretization points. The latter estimate applies to smooth surfaces, for which our
high-order algorithm provides accurate solutions with small values ofN; the for-
mer, more favorable count is valid for highly complex surfaces requiring significant
amounts of subwavelength sampling. Further, our approach exhibits super-algebraic
convergence; it can be applied to smooth and nonsmooth scatterers, and it does not
suffer from accuracy breakdowns of any kind. In this paper we introduce the main
algorithmic components in our approach, and we demonstrate its performance with
a variety of numerical results. In particular, we show that the present algorithm can
evaluate accurately in a personal computer scattering from bodies of acoustical sizes
of several hundreds. c© 2001 Academic Press
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INTRODUCTION

The calculation of electromagnetic scattering from large two-dimensional surfaces re-
mains one of the most important and challenging problems in computational science.
Roughly, these problems present difficulties, as they require accurate descriptions and ma-
nipulation of highly oscillatory functions. Scattering problems involving one-dimensional
integrals have been efficiently treated by means of high-order integrators (including the ex-
ponentially accurate trapezoidal rule and other high-order schemes [13, 18, 22, 24]), which
reduce dramatically the complexity necessary to meet a given accuracy requirement. Fast,
high-order treatment of problems of scattering by two-dimensional surfaces requires much
more delicate treatments, however [2, 3, 10, 11, 23–26, 28].

In this context, use of high-order integrators is necessary to guarantee accurate results but
is generally not sufficient. In scattering problems requiring a large numberN of discretiza-
tion points, use of a simple-minded integration scheme would usually lead to inordinately
long computing times. A number of fast algorithms for 3-D scattering have been introduced
in the past two decades [2, 3, 11, 12, 23, 26, 28, 29]. These methods are considerably faster
than classical nonaccelerated algorithms—they run inO(N log N) to O(N3/2 log N) op-
erations in contrast with theO(N2) operations required by nonaccelerated schemes—and
thus, they allow for computations involving rather large scattering surfaces. None of the
existing fast implementations exhibits high-order convergence, however. As a result, the
error of such fast computations turns out to be on the order of a fraction of a decibel (or
several percent) even for the simplest test scatterers (see [10, 28]).

In this paper we present a fast, high-order algorithm for the solution of problems of
acoustic scattering from smooth surfaces in three dimensions (see also [5]). The present
algorithm computes scattered fields inO(N6/5 log N) to O(N4/3 log N) operations. The
latter estimate applies to smooth surfaces, for which our high-order algorithm provides
accurate solutions with small values ofN; the former, more favorable count is valid for highly
complex surfaces requiring significant amounts of subwavelength sampling. A variety of
numerical experiments indicate that this algorithm performs exceptionally well and, in
fact, that it yields, in competitive running times, accuracies considerably higher than those
rendered by other methods. Explicit comparisons with a number of well-known solvers are
provided in Section 6.

The present algorithm is the result of our attempts to generalize the methods of
[8, 9] to problems of scattering by surfaces in space. In that work problems of scatter-
ing by two-dimensional heterogeneous bodies and the associatedplanar surface integrals
were treated via a combination of spherical wave expansions for the free space Green
function (the addition theorem) and the fast Fourier transform (FFT). Further, high-order
integration was obtained by analytical resolution of singularities. The resulting fast high-
order method is very accurate, and it can handle easily a wide variety of complex electrically
large scatterers.

For a variety of reasons the required generalizations of these ideas to problems of surface
scattering are not direct. On one hand, for general curvedgeometriesa numerical curved-
surface version of the addition theorem would be difficult to obtain. Further, the methods
for analytical resolution of singularities used in [8, 9] cannot be applied directly here due,
in part, to the topological and geometric characteristics of surfaces in three-dimensional
space. Finally, use of in-surface FFTs, which can be incorporated without difficulty for
the geometries treated in [8, 9], does not seem easy to implement in the cases considered
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presently. All of these difficulties can be surmounted, however: the fast, high-order algorithm
presented in this paper is based on analytical resolution of singularities and FFTs.

Our basic high-order integrator involves use of partitions of unity—to deal with topolog-
ical characteristics of closed surfaces—and analytical resolution of singularities—to avoid
costly refinement strategies. Use of this algorithm without acceleration would lead to the
customaryO(N2) operation count (whereN is the size of the surface grid). The constant
of proportionality in this complexity estimate is rather small, however, so that even without
acceleration the present high-order integrator is an efficient solver for small- to medium-
sized problems; see Section 6.2 for comparisons with other high-order integrators. For large
problems, however, use of acceleration is imperative.

Two well-known approaches to acceleration have been available for a number of years:
the fast multipole method (FMM) [12, 25, 26, 28, 29] and a broad class of FFT accelerated
techniques andk-space methods [2, 3, 11, 23]. FMM-based algorithms provide considerable
acceleration: they run in as little asO(N log N) operations per iteration. However, to the best
of our knowledge, high-order accuracy has not been demonstrated in FMM computations
of wave scattering. A possible explanation for this fact is that the FMM approach [12, 26]
depends critically on certain mappings which contain multiplication by Hankel functions
of high order. These operations are associated with a substantial amount of ill conditioning,
which leads to accuracy limitations known as the “subwavelength breakdown problem”
(see [14, p. 51; 15; 19; 21]). These instabilities may prevail and mask the asymptotic high-
order convergence of any underlying high-order integrator, however accurate. The search
for stable FMM solvers continues to this day [19], and the feasibility of such designs is yet
to be demonstrated. In contrast, the FFT acceleration techniques are stable.

The accelerator we introduce is closely related to two of the most advanced FFT methods
developed recently [2, 23]. An important element common to these two methods and our
technique is a concept of equivalent (or auxiliary) sources, located on a subset of a 3-D
Cartesian grid. In all three cases, the intensities of these sources are chosen to approximate
the field radiated by the scatterer, which allows fast computation of the numerous “non-
adjacent interactions” through the use of the 3-D FFT. Surface problems such as the ones
we consider are treated in [2, 23] by means of equivalent sources located in avolumetric
grid—in such a way that equivalent sources with nonzero intensities occupyall Cartesian
nodes adjacent to the scatterer. Since the spacing of this Cartesian grid cannot be coars-
ened beyond some threshold, and, further, since the 3-D convolution should be performed
throughout the whole volume occupied by the body, for surface problems such a scheme re-
quires anO(N3/2) FFT. Therefore, previous FFT surface scattering solvers requireO(N3/2)

units of RAM and they run inO(N3/2 log N) operations.
Our algorithm, in contrast, subdivides the volume occupied by the scatterer into a number

of (relatively large) cubic cells, and it places equivalent sourceson the facesof those cells. As
we will show, such a design significantly reduces the sizes of the required FFTs—to as few as
O(N6/5) toO(N4/3) points—with proportional improvement in storage requirements and
operation count. Further, it results in super-algebraic convergence of the equivalent source
approximationsas the size of the scatterer is increased. In view of its high-order character
and its improved acceleration technique, the present algorithm can evaluate solutions to
large scattering problems in short computing times, very accurately and with very small
memory requirements; see Section 6.

Interestingly, the two main components of the present approach can be used independently
by of each other. The acceleration method, on one hand, can be used in combination with
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any discretization strategy, including Galerkin approaches such as the method of moments,
or Nystrom approaches of any kind. This acceleration algorithm is itself extremely accurate,
so that the overall accuracy of a given implementation is determined by the corresponding
accuracy of the integration rule. Our high-order integrator, on the other hand, which leads
to the customaryO(N2) operation count when used without acceleration, can be combined
with other acceleration techniques if desired. The fast high-order combination we use is
very competitive, as is clearly demonstrated by the numerical results of Section 6, and by
the corresponding error analysis presented in the companion paper [20], which, in what
follows, is referred to as Part II.

1. MATHEMATICAL FORMULATION

As we have mentioned, the present implementation of our methods applies to acous-
tic scattering by a sound-soft obstacle: outside the obstacleD, the scattered fieldψ(r)
arising from the incoming waveψ i (r) is the unique radiating solution of the Helmholtz
equation [13]

1ψ(r)+ k2ψ(r) = 0, r ∈R3\D̄, (1)

with the boundary condition

ψ(r) = −ψ i (r), r ∈ ∂ D. (2)

Herek denotes the wavenumber (so thatλ = 2π/k is the wavelength), andr = |r |. Ex-
tension of our methods to the corresponding electromagnetic Maxwell problem will be
presented elsewhere.

A solution to the Helmholtz problem above can be obtained through an integral equation
formulation including the acoustic single- and double-layer potentials,

(Sϕ)(r) =
∫
∂ D

8(r , r ′)ϕ(r ′) ds(r ′) (3)

and

(Kϕ)(r) =
∫
∂ D

∂8(r , r ′)
∂ν(r ′)

ϕ(r ′) ds(r ′). (4)

Here8(r , r ′) = eik|r−r ′|/4π |r − r ′| is the Green function for the Helmholtz equation, and
ν(r ′) is the external normal to the surface at pointr ′. Explicitly, the scattered field can be
obtained easily once the integral equation for the unknown densityϕ(r),

1

2
ϕ(r)+ (Kϕ)(r)− i γ (Sϕ)(r) = ψ i (r), r ∈ ∂ D, (5)

has been solved; see [13]. Hereγ is an arbitrary positive constant; appropriate choices of
this parameter can be very advantageous in practice—see Section 6.

Naturally, the possibility of producing fast and accurate solutions for our problems hinges
on our ability to evaluate the integrals (3) and (4) accurately and efficiently. In attempting
to develop such accurate and efficient integrators one faces two main difficulties, namely,
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accurate evaluation of the singularadjacent interactions—without undue compromise of
speed—and fast evaluation of the voluminous number ofnonadjacent interactions—without
compromise in accuracy.

The difficulties connected with the high-order evaluation ofadjacent interactionsare
caused, mainly, by the singular nature of the integral kernels8(r , r ′) and∂8(r , r ′)/∂ν(r ′)
at r ′ = r . While, certainly, the well-known strategy of “singularity subtraction” gives rise
to bounded integrands, integration of such bounded functions by means of classical high-
order methods does not exhibit high-order accuracy, since the subsequent derivatives of the
integrand are themselves unbounded. Thus, specialized quadrature rules must be developed
and used to achieve high-order-accurate integration. Our high-order adjacency integrator,
which is described in detail in Section 3, is based on the use of partitions of unity and
analytical resolution of singularities. This approach compares favorably with previous high-
order methods: it does not require costly setup manipulations and it leads to substantially
more accurate and faster numerics. Comparisons of the accuracies and timings produced
by our method with those given by other high-order methods are presented in Section 6.

2. PARTITIONS OF UNITY AND DISCRETIZATION

In order to deal with topological characteristics of closed surfaces and the singular char-
acter of integrands we utilize a strategy based on local parametrizations together withfixed
andfloatingpartitions of unity (POU), as explained in what follows.

To describe the scattering surface∂ D we cover it by a numberK of overlapping coordinate
patchesPk, k = 1, . . . , K (local charts, in the language of differential geometry), such
that

1. Each patchPk is an open set within∂ D for k = 1, . . . , K , and the setsPk, k =
1, . . . , K , cover∂ D (Fig. 1).

2. The setPk is the image of a coordinate open setHk , contained in the plane, via a
smooth invertible parameterization

r k = r k(uk, vk) defined for(uk, vk) ∈ H j , k = 1, . . . , K ,

which admits a smooth inverse, and such that the vector product

Vk = Vk(uk, vk) = ∂r k

∂uk
× ∂r k

∂vk
(6)

is bounded away from zero inHk. We assume, as we may, that each one of the vectorsVk

is an outward normal, so that the outward unit normal onPk is given by

νk = Vk

|Vk| .

In practice, we find it advantageous to utilize as large patches as the geometry permits.
This approach thus provides a compromise between a desirable global discretization and
the impossibility of describing a complicated surface by a single equation.

We will utilize a partition of unity subordinated to this covering of∂ D, that is, a set of
functions{wk(r), k = 1, . . . , K }, such that
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1. wk is defined, smooth, and nonnegative in∂ D, and it vanishes outsidePk, and
2.
∑K

k=1 wk = 1 throughout∂ D.

It is not difficult to construct numerically such a POU for a given surface. For efficiency
it is preferable to use a POU with small derivatives, which can be arranged by allowing for
substantial overlap of the patchesPk. Use of this partition of unity, which will be referred to
as the“fixed” POU, allows us to reduce integration over the surface to evaluation of integrals
of smooth functionsϕk(uk, yk) compactly supported in the planar setsHk multiplied by
the singular kernels. Indeed, defining

ϕk(uk, vk) = ϕ(r k(uk, vk)) · wk(r k(uk, vk)) (7)

we see that an integral over the entire surface∂ D evaluated at the pointr may be obtained
as a sum of integrals overHk for k = 1, . . . , K :

(Sϕ)(r) =
K∑

k=1

∫
Hk

8(r , r k(uk, vk))ϕk(uk, vk)Jk(u
k, vk) duk dvk, (8)

(Kϕ)(r) =
K∑

k=1

∫
Hk

∂8(r , r k(uk, vk))

∂ν(r k(uk, vk))
ϕk(uk, vk)Jk(u

k, vk) duk dvk. (9)

At this stage we may describe our discretized problem, which we obtain through dis-
cretization of the densitiesϕk(uk, vk) for k = 1, . . . , K . To do this we use aCartesianset
of nodes(uk

`, v
k
m) withinHk, and we denote byϕk

`,m the corresponding nodal values of our
approximation to the density: these values are the unknowns we seek to obtain. To compute
approximations to the integrals (3) and (4) we need to prescribe a quadrature rule which,
utilizing the valuesϕk

`,m, evaluates the patch integrals in Eqs. (8) and (9) to high order.
To design our quadrature rule we first note that the high-order integration problem depends

significantly on whether the integrand is singular within the integration domain. In detail,
if r lies outsidePk thenr ′ = r k(uk, vk) does not coincide withr for (uk, vk) ∈ Hk, and
the kernels8(r , r ′) and ∂8(r , r ′)/∂ν(r ′) remain nonsingular within the patch. In this
case we see, further, that, because the densitiesϕk(uk, vk) vanish to high order at the
boundary of the relevant integration domains, the functions to be integrated can actually
be viewed as smooth periodic functions. However, for such functions the trapezoidal rule
yields quadratures with super-algebraic convergence, and our integration problem is solved
in this case. Interestingly, we will utilize trapezoidal rules throughout the paper to construct
an efficient higher order integrator of the singular integrals as well—as we explain in what
follows.

Let us thus consider the problem of evaluation of an integral over the patchPk for a
point r within Pk. (Note that such a point can correspond to either a node(uk

`, v
k
m) of the

coordinate grid on the patchPk or to some node(u j
q, v

j
r ) associated with a different patch

P j which overlapsPk.) In this case we will use an infinitely smooth finitely supported
functionηr (r ′) to split our integration problem in the form∫

. . . ds(r ′) =
∫

. . . (1− ηr (r ′))ds(r ′)+
∫

. . . ηr (r ′)ds(r ′), (10)

where ηr (r ′) = 1 for |r − r ′| < r0 and ηr (r ′) vanishes for|r − r ′| ≥ r1. The pair (ηr ,

1− ηr ) is, of course, a partition of unity. One such POU needs to be constructed for each
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FIG. 1. POU covering and region of singular integration.

target pointr ′: the collection of all such partitions of unity will be referred to as thefloat-
ing POU. We see that the integrand containing the factor(1− ηr (r ′)) is, again, a smooth
periodic function, and the corresponding integral may be accurately evaluated by means of
the trapezoidal rule; the integral containing the factorηr (r ′), in turn, will be evaluated by
means of a specialized high-order singular integrator constructed in Section 3.

(The floating POU allows us to restrict use of a specialized high-order singular integrator
(see Section 3) to a neighborhood of each singular point—thus limiting the computational
cost of such singular integrations and allowing for a fast overall integrator. The support of
the floating POU will be chosen in such a way as to optimize the overall complexity of the
algorithm while maintaining super-algebraic convergence; see Section 4. The choiceη = 1
(larger0, no localization) gives rise to anO(N2) integrator—which, as we will see, can
itself be quite efficient for small- to medium-size problems.)

The POU scheme described in this section is depicted in Fig. 1. We thus see the surface
is covered by large patches which have associated “fixed” partitions of unity. Varying the
target pointr , in addition, we have a two-function “floating” partition of unity. The radial
lines in Fig. 1 relate to the details of our singular high-order integrator, which we describe in
the following section. The nonsingular integrals will be computed by means of trapezoidal
rules, appropriately accelerated by means of the methods of Section 4.

3. SINGULAR INTEGRATION: VARYING POLAR COORDINATE SYSTEM

In this section we describe the high-order adjacency-integrator that we use for evaluation
of the last integral in Eq. (10). In detail, on each patchPk we need to integrate numerically
products of a smooth functionfk(u′, v′) = ϕk(u′, v′)Jk(u′, v′)ηr (r ′(u′, v′)) with kernels of
each one of the following types:

G1(R) = cosk|R|
|R| ,

G2(R) = sink|R|
|R| ,

G3(R) =
(

k cosk|R| − sink|R|
|R|

)
R · ν(r )

R2
, (11)

G4(R) = cosk|R|
|R|

R · ν(r )

R2
,

G5(R) = sink|R|R · ν(r )

2R2 .



ALGORITHM FOR SURFACE SCATTERING PROBLEMS 87

Here, for an arbitrary evaluation pointr ∈ ∂ D we have setR = r − r k(u′, v′); the kernels
G1(R) andG2(R) correspond to the single-layer potential, whileG3(R) throughG5(R)

occur in the double-layer integral.
It is easy to design a high-order integration algorithm for the products offk(u′, v′) with

G2(r) andG3(r): these kernels are real analytic functions, and the functionfk(u′, v′) is
smooth and vanishes with all its derivatives for|R| ≥ r1 due to the properties ofηr (r ′(u′, v′)).
Thus, the trapezoidal rule provides a high-order quadrature rule in this case.

This approach is not appropriate, however, for any of the remaining kernels. Indeed,
the kernelsG1(r) andG4(r) are singular, whileG5(r) is discontinuous at|R| = 0. As we
have mentioned, our approach to high-order quadrature of such kernels is based onanalyt-
ical resolutionof the associated singularities—that is, reduction of the singular integral to
quadrature of smooth functions.

To obtain such analytical resolutions for integrals evaluated at a discretization point
(u, v) ∈ Hk (wherer k(u, v) = r ) we use a system of polar coordinates centered at(u, v):
u′ − u = ρ cosθ, v′ − v = ρ sinθ . (Again, r may correspond to either a noder k(uk

`, v
k
m)

of the coordinate grid on the current integration patch or to some noder j (u j
q, v

j
r ) associated

with a different patchP j which overlapsPk.)
In this system of coordinates the relevant integrals can be made to read

Ii (u, v) = 1

2

2π∫
0

Li (u, v, θ) dθ, i = 1, 4, 5, (12)

where we have set

L1(u, v, θ) =
r1∫
−r1

f ∗k (ρ, θ)
|ρ|
|R| cosk|R| dρ,

L4(u, v, θ) =
r1∫
−r1

f ∗k (ρ, θ)
|ρ|
|R| cosk|R|R · ν(r )

R2
dρ,

L5(u, v, θ) =
r1∫
−r1

f ∗k (ρ, θ)
|ρ|
|R| |R| sink|R|R · ν(r )

R2
dρ,

(13)

with

R = R(ρ, θ) = r ∗(ρ, θ)− r(u′, v′),

r ∗(ρ, θ) = r(u+ ρ cosθ, v + ρ sinθ),

f ∗k (ρ, θ) = fk(u+ ρ cosθ, v + ρ sinθ).

For an infinitely smooth surface the expressions

|ρ|
|R| , (14)

R · ν(r )

R2
(15)
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can be easily shown to be infinitely smooth functions ofρ for any fixed directionθ. In the
limit ρ → 0 the values of these expressions can be found explicitly as

A ≡ lim
ρ→0

|ρ|
|R| = |ru(u, v) cosθ + r v(u, v) sinθ |−1,

lim
ρ→0

R · ν(r )

R2
= −1

2
κn(u, v, θ) = − A2

2

(
d2r ∗(ρ, θ)

dρ2
· ν(r )

)
,

whereκn(u, v, θ) is the curvature of the surface at the pointr(u, v) in the directionru(u, v)

cosθ + r v(u, v) sinθ.

Since all the other factors in the integrands of (13) are smooth functions ofρ, and since the
integrands vanish at the ends of the integration interval together with all their derivatives,
the use of the trapezoidal rule provides radial quadratures of high-order accuracy. The
trapezoidal rule also provides an appropriate high-order integrator for the angular integration
of Eq. (12), since the corresponding integrandsLi (u, v, θ), i = 1, 4, 5, are themselves
smooth periodic functions ofθ . By symmetry, the range of the angular integration can be
reduced from 2π to π.

(An additional aspect that needs to be considered in this context concerns cancelation
errors. Indeed, since we utilize several parametrizations, it is possible for the quantity|R| to
become very small while remaining nonzero. In this case, special care should be excercised
to avoid cancelations errors when evaluating Eqs. (14) and (15); indeed, it is not hard to
compute these expressions by means of appropriate polynomial interpolations and/or Taylor
expansions—thus avoiding explicit calculation of differences.)

We have thus shown that use of polar coordinates provides an effective analytical resolu-
tion of the singular terms and that it allows high-order integration by means of the trapezoidal
rule. The corresponding radial quadrature points, however, do not lie on the Cartesian grid
associated with the given coordinate patch; see Fig. 2. Thus, use of an appropriate (fast) in-
terpolation strategy is necessary for evaluation of the necessary function values at the radial
integrations points. Efficiency is of utmost importance here, since we use one such polar
coordinate transformationat each target point(u, v). An efficient interpolation method can
in fact be obtained—as described in what follows.

FIG. 2. Integration in a polar system; empty circles indicate discretization points for the integration with
respect toρ.
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3.1. Efficient Interpolation Scheme

To obtain accurately interpolated values of the integrandϕk(u′, v′) at points lying on the
linesu′ = u+ ρ cosθ`, v′ = v + ρ sinθ`, θ` = π`/n, ` = 0r , . . . , n− 1 from the corre-
sponding values at the Cartesian nodes we proceed as follows. The integrand is given by its
values at the nodes(ui , v j ), ui = i 1u, v j = j 1v, i = −nu, . . . , nu, j = −nv, . . . , nv. To
evaluate an integral along the lineu′ = u+ ρ cosθ`, v′ = v + ρ sinθ`, for θ` ∈
[π/4, 3π/4], we utilize a trapezoidal quadrature rule with the discretization step1ρθ equal
to 1v/ sinθ`, so that the integrand has to be evaluated at the pointsρk = k1ρθ − v/ sinθ`.

Note that the quadrature rule is chosen so that all of these points are situated on the straight
linesv j = j 1v, as shown in Fig. 2.

Since for each fixed valuev′ = v j = j 1v the function is known at equidistant points
ui = i 1u, a one-dimensional interpolation in theu direction suffices to provide all the
required values. To speed up calculations while maintaining high-order accuracy, we use
the following interpolation and approximation algorithm:

1. Obtain the Fourier coefficients of the given function for each one of the linesv′ =
v j = j 1v by means of the fast Fourier transform.

2. Evaluate the resulting Fourier series and their first derivatives on a much finer equis-
paced grid. These evaluations can be obtained efficiently, again, by means of the fast Fourier
transform; in all numerical examples provided in the present text the spacing of the refined
grid was 16 times smaller than that of the original grid.

3. On each interval of the refined grid construct an interpolating polynomial of degree
3 such that its values and the values of its first derivatives coincide with those of the
trigonometric polynomial at the endpoints of the interval.

As a result of this procedure we obtain polynomial splines that closely approximate the
interpolating Fourier series. The use of the fast Fourier transform makes the interpolation
times negligible compared to that required by the other stages of the algorithm; evaluation
of the splines at the required points requires few multiplications and additions per point and
it is therefore very fast as well. (Clearly our interpolating algorithm, which is based on use
of cubic interpolations, is fourth order accurate in the subgrid spacing. One could certainly
use increasingly larger subgrids and Chebyshev interpolation to produce an interpolation
technique of super-algebraic convergence. This is a matter of limited interest in practice,
however. Indeed, in the cases we have considered, the cubic interpolation method with a
16-fold refinement described above matches the accuracy of the underlying trigonometric
approximation toO(10−9), in computing times on the order of 1% of the time required
by the overall computation. These accuracies are higher than those of interest in all of the
problems we have treated, so that the use of more sophisticated interpolating techniques
does not seem necessary.)

The radial integrations have thus far been restricted to lines determined by anglesθ` in
the interval [π/4, 3π/4]. Integration over the lines corresponding to the complementary set
of anglesθ` ∈ [0, π/4] ∩ [3π/4, π ] can be performed similarly; in this case interpolations
along the linesui = i 1u should be used.

4. EVALUATION OF NONSINGULAR INTERACTIONS

Unlike the singular quadrature problem, the evaluation of nonsingular interactions does
not present challenges from the point of view of accuracy, since in this case all integrands
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are smooth and, in view of our smooth patching strategy, the trapezoidal rule yields high-
order accuracy (see [20] for a detailed error analysis). The main task here, however, relates
to acceleration. Indeed, most interactions are of nonadjacency type, and a direct use of an
integrator such as the trapezoidal rule would lead to a completeO(N2) algorithm.

In the following section we introduce our precise concept of adjacency, which is central
to our approach. According to this concept (which bears some similarities to the ones
used in other accelerated methods such as the FMM [25] and thek-space method [23]), the
nonsingular interactions are further classified into nonadjacent nonsingular interactions and
adjacent nonsingular interactions. The evaluation of nonadjacent interactions is discussed
in Sections 4.1–4.3 below. We note that the combination of the integrator of Section 3
with that of Sections 4.1–4.3 accounts for most of the surface interactions but not all of
them. Our treatment of certain remaining “adjacent nonsingular” interactions is discussed in
Section 4.4—where, in addition, we make specific choices with regard to the parameters
defining the floating partition of unity of Sections 2 and 3 and thus complete the description
of our integration algorithm.

4.1. Two-Face Equivalent Source Representations

Our acceleration strategy is based on certain distributions of “equivalent sources,” which
we describe in what follows. We begin by considering a cubeC of side A containing the
given obstacle, which we then partition into a numberL3 of identical, nonoverlapping
cubic cellsci of sideH = A/L, so that there areL cells along each edge of the cube. (For
elongated obstacles a 3-D slab is preferable; for simplicity of presentation, however, we
will limit our discussion to a covering by a cube.) We note that each one of the surface
discretization points (also called “true sources” in what follows) is contained in one of the
cellsci ; typically, however, most cells contain no true sources in their interior. As we shall
see in Section 4.3, it is necessary for our method to use cellsci , which do not admit inner
resonances—eigenfunctions of the Dirichlet Laplacian—for the given wavenumberk. This
can be ensured easily by adjusting slightly the cube sizeA and the cell sizeH if necessary.

We seek to substitute the surface sources contained in a cubic cellci by certain “equivalent
sources” on the faces ofci , in such a way that the field produced by theci -equivalent sources
coincides, to high-order accuracy, with the field generated by theci -true sources at all points
in space that are “not adjacent” toci . More precisely, the approximation corresponding to
a cellci will be valid outside the concentric cubeSi of side 3H , with exponentially small
errors. As we show below, for computational efficiency it is favorable to use a sequence
of three independent sets of equivalent sources, located on three corresponding sets of
points5`, ` = 1, 2, 3. To define5`, note that the union of all cell faces parallel to the
coordinate planex` = 0 consists of a numberL of parallel squares of sideA. Upon choice
of an equivalent-source step sizeh (see Remark 4 and Section 5), we place identical two-
dimensional Cartesian grids of points on each one of these squares;5` is then defined as
the union of all these grids.

(We note that such distributions of equivalent sources, which by design are contained
in three sets of “sparsely spaced” parallel planes, lead to significant benefits: On one hand
they give rise to a high-order accelerator; see also Table VII and Part II [20]. On the
other hand, sparsity leads to FFTs which are significantly smaller than those arising from
fully volumetric equivalent-source distributions [2, 23]—and, thus, to substantially reduced
memory requirements and faster numerics.)
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The high-order equivalent-source representations we seek for nonadjacent fields result
from consideration of spherical harmonics, Bessel and Hankel functionsYm

n (·), jn(·), and
h(1)

n (·), and the spherical wave series

u(r) = ik
∞∑

n=0

n∑
m=−n

bn,mh(1)
n (k|r |)Ym

n (r/|r |), (16)

which, for a fieldu(r) generated by sources inside a sphereBa of radiusa, provides a
convergent expansion of the field everywhere outsideBa. Roughly speaking, at a distance
D = |r | from the center ofBa, the error in a truncated spherical wave expansion (16)
containing then ≤ nt terms only,

u(r) = ik
nt∑

n=0

n∑
m=−n

bn,mh(1)
n (k|r |)Ym

n (r/|r |), (17)

is of order

O
((

a

D

)nt
)

(18)

for sufficiently largent ; see Remark 4. This estimate, which follows from the asymptotic
properties of the special functions and consideration of the addition theorem [13],

eik|r−r ′|

4π |r − r ′| = ik
∞∑

n=0

n∑
m=−n

h(1)
n (k|r |)Ym

n (r/|r |) jn(k|r ′|)Ym
n (r ′/|r ′|), (19)

is discussed in detail in [20].
It follows from these considerations that, at a distanceD from a given cellci , the fields

generated by theci -surface andci -equivalent sources can be approximated with a prescribed
accuracy by truncated spherical wave expansions of the form (17) with an appropriate value
of nt . However, these expansions converge slowly in at least some of the 26 cells surrounding
ci . This leads to our precise concept of adjacency: two pointsr andr ′ in space are considered
to be adjacent if they both lie within the same cellci or if one lies within a cellci and the
other lies in any of the 26 neighboring cells. Equivalently, a pointr ∈ ci is adjacent to every
point r ′ ∈ Si and nonadjacent to every pointr ′ 6∈ Si .

We can now describe the specifics of our implementation. For a fixed value of` = 1, 2,
3, we associate to each cellci -equivalent sources (monopolesξ

(m)`
i, j 8(r , r `

i, j ) and dipoles

ξ
(d)`
i, j ∂8(r , r `

i, j )/∂x` of intensityξ
(m)`
i, j andξ

(d)`
i, j , respectively), which are placed at points

r `
i, j , j = 1, . . . , Mequiv, contained within certain subsets5`

i of 5`. In detail, the set5`
i

consists of all the points in5` which lie within the union of two circular domains concentric
with (and containing) the faces ofci in 5`, as shown in Fig. 3. The radius of these domains
is chosen to be equal to—or slightly larger than—the length of the diagonals of the faces;
experimentally it was found that increase of the radius up to 40% leads to somewhat higher
accuracy and relatively small increases in computing times.

Remark 1. As shown in Part II [20], use of a combined set of monopoles and dipoles
does indeed suffice to provide convergent approximations from the types of two-face rep-
resentations we use. Two-face distributions of one type, either monopole or dipole type, do
not give rise to such convergent approximations, however.
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FIG. 3. Locations of the equivalent sources (black circles); gray squares indicate faces of a cellci .

Like the field ψci ,true radiated by theci -true sources, the fieldψci ,eq radiated by the
ci -equivalent sources

ψci ,eq(r) =
1
2 Mequiv∑

j=1

(
ξ

(m)`
i, j 8

(
r , r `

i, j

)+ ξ
(d)`
i, j

∂8(r , r ′)
∂x′`

∣∣∣∣
r ′=r `

i, j

)
(20)

can be expressed through an expansion of the form (16). Let us take a valuent of the
truncation parameter such that the truncated expansion (17) corresponding toψci ,true ap-
proximates this quantity to within the prescribed error tolerance. We thus see thatψci ,true

can be approximated byψci ,eq at points nonadjacent toci and to within a given toler-
anceO(ε) if and only if the intensities of the equivalent sources can be selected in such a
way that:

1. The coefficients of the spherical wave expansion (16) forψci ,true are approximated
“well” by the corresponding expansion coefficients forψci ,eq for all n ≤ nt . More precisely,
the truncated spherical wave expansion of ordernt for these two fields should differ in no
more thanO(ε) everywhere outsideSi

2. Thent -tail (i.e., the sums forn > nt ) of the spherical wave expansion forψci ,eq should
be ofO(ε) or less everywhere outsideSi .

In practice, it was found that these two conditions can be guaranteed to hold provided

Mequiv∼> n2
t (21)

equivalent sources are used, and provided the intensities are chosen so that the vector
formed by the differences(ψci ,eq(r)− ψci ,true(r)) (asr varies over a numberncoll ≈ 2Mequiv

collocation points on∂Si ) is minimized in the mean-square norm. Thus, the intensities are
obtained as the least-squares solution of an overdetermined linear system of the form

Aξ = b, (22)

whereA is anncoll × Mequivmatrix. Note that this prescription does not require explicit use
of the spherical wave expansions (16), and thus it completely bypasses costly evaluations
of special functions.
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Remark 2. Since all the cellsci are identical, the matrixA above is one and the same
for all theci ’s. Thus, the QR decomposition ofA (which we use to solve the least-squares
problem under consideration) need only be computed once and stored for repeated use.

Remark 3. Our choice for the positions of the equivalent sources and similar choices
for the corresponding positions of thencoll collocation points can lead to substantial re-
ductions in computation time. Our prescription in these regards takes advantage of certain
symmetries which can be exploited to induce a block diagonal structure in the matrixA,
and, consequently, a significant eightfold reduction in the computational expense required
to produce the intensities of the equivalent sources; see Appendix A.

Remark 4. The asymptotic regime of exponential decay (18) for the error in the approx-
imation (17) is achieved for values ofnt ≥ 2k A/L; that is,nt must exceed 4π times the
acoustical size of the cells (measured inλ); see Part II [20]. Thus, the parameterMequiv≥ n2

t

must exceed the value(2k A/L)2 for the substitution to exhibit exponentially accurate ap-
proximations. As shown in Part II, the prescriptionMequiv = n2

t with nt given by

nt = max

{
2k A

L
,−2

log(ε)

log(3)

}
(23)

gives rise to errors ofO(ε) in the equivalent source approximations; the associated maximal
step sizeh = hmax in the Cartesian grids of5` is then, approximately,hmax≈ (2A)/(Lnt ).

Remark 5. The surface distributions of equivalent sources we use are not unrelated to
those occurring in the Laplace solver of [1]. Indeed, that FMM algorithm uses distributions
of equivalent sources on spherical surfaces to represent the fields generated by portions of the
scattering surface. Such spherical arrangements are not suitable for use in conjunction with
FFTs. Our equivalent sources, in contrast, like those arising in otherk-space methods, are
designed to work as part of FFT-based algorithms. Our two-face distributions of equivalent
sources are useful in that they give rise to reduced FFTs and thus to substantially reduced
computing times and memory requirements.

4.2. FFTs: Nonadjacent Field Values on a Sparse 3-D Grid

The methods introduced in the previous section allow us to identify the field produced by
the portion of the scattering surface contained within a cellci with the corresponding field
produced by the equivalent sources on5`

i everywhere outsideSi . In other words, recalling
the definition of adjacency of Section 4.1, we defineψa,true(r) andψna,true(r) as the fields
induced at pointr by the adjacent and nonadjacent true sources, respectively, so that

ψ(r) = ψa,true(r)+ ψ(na,true)(r). (24)

Further, denoting byψ(na,eq)`(r) the field induced at pointr by all the equivalent sources
in 5` nonadjacent tor (` = 1, 2, 3), we may write

ψ(r) = ψa,true(r)+ ψ(na,eq)`(r)+O(ε), (25)

where theO(ε) term is the prescribed numerical tolerance in the equivalent source approx-
imation; see Section 4.1.
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The acceleration algorithm utilizes a quantity related to those occurring in Eq. (25),
namely, the fieldψ(∗)`(r) produced at a grid pointr by all of the equivalent sources in5`

except the one at pointr—where the Green function is infinite. Using the notation

8∗(r , r ′) =
{

8(r , r ′) for r 6= r ′

0 for r = r ′
, 0(∗)`(r , r ′) =

{
∂8(r , r ′)/∂x′` for r 6= r ′

0 for r = r ′

(26)

we have

ψ(∗)`(r) =
∑
r ′∈5`

(
ξ

(m)`
r ′ 8∗(r , r ′)+ ξ

(d)`
r ′ 0(∗)`(r , r ′)

)
(27)

(compare with (20)). Here the intensitiesξ
(m)`
r ′ andξ

(d)`
r ′ denote the sum of all intensities of

equivalent sources located at pointr ′:

ξ
(m)`
r ′ =

∑
r `

i, j=r ′

ξ
(m)`
i, j , ξ

(d)`
r ′ =

∑
r `

i, j=r ′

ξ
(d)`
i, j . (28)

We note that the functionsψ(∗)` (` = 1, 2, 3) do not approximate any of the physical
quantities under consideration since, at any givenr ∈ ∂ D, the quantityψ(∗)`(r) contains
only poor approximations of contributions from sites adjacent tor . Subtraction of these
poor approximations would then complete the evaluation ofψ(na,eq)`(r).

The importance of the quantitiesψ(∗)` lies, of course, in that, being exact convolutions in
a Cartesian grid, they can be evaluated accurately and efficiently by means of the fast Fourier
transform. Having obtainedψ(∗)`, one can proceed to computeψ(na,eq)` by subtracting from
ψ(∗)` contributions of adjacent cells. Since the equivalent sources are located in the nodes of
a Cartesian grid, the contributions from adjacent cells are given by (small) three-dimensional
convolutions—which can be evaluated efficiently by means of FFTs. Upon subtraction, the
values ofψ(na,eq)` result. These values provide good approximations for the fieldψ(na,true);
usingψ(na,eq)` for ` = 1, 2, 3 we thus obtain approximations forψ(na,true) throughout the
boundary of each cell ci . The evaluation of the surface values of such nonadjacent true
fields is the subject of the following section.

4.3. Evaluation of the Surface Values ofψna,eq

Onceψ(na,true)(r) is known forr on the faces of a cellci , this function can be evaluated
at points insideci as the solution of a Dirichlet problem. Such Dirichlet problems can be
solved uniquely and in a stable manner since the size of the cells has been chosen so that
internal resonances do not occur (Section 4.1); see also [20] for an error analysis in these
regards.

In order to obtain the field inside a cell, we use a discretized plane wave expansion [16],

ψ(na,true)(r) ≈
nwave∑
j=1

ζ j expiku j r , (29)

whereu j are unit vectors defining directions of wave propagation, andζ = (ζ1, ζ2, . . . ,

ζnwave) is a vector of expansion coefficients. Sinceψna,true(r) does not contain contributions
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from cells adjacent tor , ψna,eq(r) this expansion converges exponentially fast with increas-
ing number of wavevectorsu j ; see [20] for details. A number of other representations could
be used in the solution of our Dirichlet problems, including an inner-field spherical wave
expansion; the expansion (29) seems advantageous in that it does not require evaluation of
special funcions.

The choice of the unit vectors in the representation (29) is rather arbitrary: it is only
necessary for the vectorsu j to sample the surface of the unit sphere with a sufficient degree
of uniformity. The prescription we use for the distribution of theu j ’s leads to significant
reductions in the operation count; see Appendix A for details. The coefficientsζ j , on the
other hand, are chosen so that the expansion (29) matches the field values on the boundary
of ci . As in Section 4.1, stability considerations require discretizations and plane waves to
be set up in such a way that the associated linear algebra problem is overdetermined, in the
present case by a factor of 1.5 or less—depending on the acoustical size of the cellsci .

The matching procedure thus requires solution of an overdetermined system of linear
equations

Bζ = d, (30)

whered = (d1, d2, . . . , dnface) is a vector containing known values ofψ(na,true) at all the
equivalent-source pointsr `

i, j contained in the boundary ofci , andB is an nface× nwave

matrix (nface > nwave). Note that not all of the1
2 Mequiv equivalent source locations in5`

i

are used here as matching points; see Fig. 3. This least-squares problem is solved by
means of a QR decomposition; as in Section 4.1, since the geometry of all cells is identical
the QR factorization ofB needs to be computed only once, as factors can be stored for
repeated use.

4.4. Adjacent Nonsingular Interactions

The floating POUηr of Section 2 was introduced as a means to reduce the domain in
which the polar coordinate integration of Section 3 is operative—thus avoiding the sub-
stantialO(N2) overall operation count which would otherwise be required—but the size
of the support of ηr was left unspecified. The FFT acceleration technique of
Sections 4.1–4.3, in turn, effectively accelerates the evaluation of nonadjacent contribu-
tions, that is, the contribution to a cellci from sources lying outside the cubeSi . It is
therefore reasonable to restrict the support ofηr to lie within Si for everyr ∈ ci . Thus our
prescription is: Takingr1 to equal the cell sizeH ,ηr (r ′) is aC∞ function ofr ′,ηr (r ′) = 1 for
|r − r ′| ≤ r0 andηr (r ′) vanishes for|r − r ′| ≥ r1. The specific value ofr0 and the particular
function to be used have limited impact as long as the derivatives ofηr are not excessively
large. In fact, it is advantageous to set up this floating POU in such a way that its spatial
derivatives are as small as possible: a specific form we have used frequently is

ηr (r ′) = e
2e−1/t

t−1 , t = |r − r ′|/r1.

To complete our integration algorithm we need to add the integral containing the term
(1− ηr ) in Eq. (10) over the portion of the scattering surface which lies withinSi . To do
this we simply add the corresponding point sources at the Cartesian discretization points in
parameter space whose images lie insideSi . The overall procedure results in spectral accu-
racy, since together with the integral over the nonadjacent sources (given by the acceleration
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scheme), this makes up the trapezoidal rule sum for the first integral on the right-hand side
of Eq. (10), whose integrand is a smooth periodic function in(u, v) parameter space.

Sections 2–4 provide a full description of our integration algorithm for any given choice
of the discretization parametersN, L, and Mequiv. Various rationales leading to optimal
choices of these parameters are discussed in the following section.

5. DISCRETIZATION PARAMETERS AND OPERATION COUNT

The explicit algorithmic prescriptions introduced in the previous sections depend on three
main discretization parameters, namely, the numberN of surface discretization points, the
numberL of planes defining the sets5`, and the numberMequiv of equivalent sources in
each one of the sets5`

i . Alternatively, we may characterize our discretizations by means
of the three numbers(N, L , M), whereM is the total number of points within each one of
the planes defining5`. (With reference to the equivalent-source spacingh introduced in
Section 4.1 we haveh = A/

√
M .) Note that

2π M/L2 ∼< Mequiv∼< 4π M/L2. (31)

The precise relation betweenMequivandM depends on the radius used for the domains5`
i ;

see Section 4.1.
Specific choices of the parameters(N, L , M) are to be made to account for the character

of each problem under consideration. Thus, for example, the numberN of discretization
points must be selected in order to correctly sample acoustic wavelengths and scattering
surfaces. The parametersL andM , however, ought to be chosen to optimize the operation
count for a prescribed accuracyε.

To analyze and optimize the complexity of our algorithm we need to consider some
basic associated quantities; these parameters, all of which can be expressed in terms of
(N, L , M), are listed in Table I. With these quantities it is not difficult to determine the
number of operations required by the various stages of our algorithm.

Let us consider, for example, the cost of the most important part in our acceleration
algorithm, namely, the convolution step. There are in fact six convolutions in this step, two
for each of the three sets of equivalent source planes, one for the monopole distribution, and
the other for the dipole distribution. Each one of these convolutions is computed through
an FFT on the three-dimensional grid of equivalent sources. Since, as stated in Table I,

TABLE I

Number of Elements in Various Discretization Sets

Set Number of elements

Surface discretization points N
Planes defining the sets5` L
Equivalent sources on each of the5` planes M
Equivalent sources along the edge of a cellci M1/2/L
5i

` Mequiv≈ 2π M/L2 to 4π M/L2

Nonempty cells O(L2)

Surface points in each nonempty cell, averageO(N/L2)
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TABLE II

Number of Operations Required by Various Stages of the Algorithm

Operation Flops (per iteration)

Trigonometric interpolation (Section 3.1) O(N log N)

Evaluation of adjacent interactions (Sections 3 and 4.4) O(N2/L2)

Evaluation of the vectorsb andd for all cells (Sections 4.1 and 4.3) O(M N/L2)

Solution of all least-squares problems (Sections 4.1 and 4.3) O(M2/L2)

Convolution (Section 4.2) O(M L log M L)

Evaluation of surface values of the equivalent-source field (Section 4.3) O(M N/L2)

Correction of the surface values of the equivalent-source field (Section 4.2)O(M log(M/L2))

a set ofL planes each containingM equivalent sources is used, there is a total ofL M
equivalent sources in each convolution. Thus, the convolution step reduces to evaluation of
a fixed number of FFTs of sizeO(L M), and thus, the total cost of the convolution step is
O(L M log(L M)). All other necessary counts result similarly from the parameters listed in
Table I. The resulting complexities are listed in Table II.

In order to proceed with the parameter optimization we may safely assume that the
relation

M ≤ O(N) (32)

holds. Indeed, in view of Eq. (23),Mequiv is roughly of the same order of magnitude as the
number of points in the face of a cellci as dictated by the Nyquist frequency, so thatM is
approximately equal to the number of points required to Nyquist-sample a surface of area
A2—while N must be at least that and possibly larger if subwavelength surface features
need to be resolved. (Generally, a significant amount of subwavelength sampling is required
to accurately resolve geometric features of a given surface, although simple, slowly varying
geometries such as spheres can be sampled at rates determined by the radiation wavelength
only.)

Under the condition (32), the total number of operationsT—which equals the sum of
the quantities in the right column of Table II—is given by

T = O(N2/L2)+O(M3/L6)+O(M L log M L). (33)

In view of the relations

Mequiv= n2
t , nt = max

{
2k A

L
, 2
− log(ε)

log(3)

}
, and Mequiv= O(M/L2) (34)

(see (21), (23), and (31)), it follows that for a givenfixedvalue ofN, T actually depends on
a single parameter, say,T = T (L), and thus, that once the surface sampling rate has been
chosen, the optimal discretization parametersL andM can be obtained as the solution of a
one-dimensional minimization problem.

To minimizeT we define

c(ε) = − log(ε)

log(3)
, (35)
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and we consider the two alternatives that arise as the maximum in Eq. (34) is realized either
by 2k A/L or by 2c(ε).

Case A. k A
L ≥ c(ε). In this case we haveM = O(k2A2); to simplify the optimization

calculation we define an exponentβ by

β(N, k A) = log(k2A2)/ log N, (36)

so that the total numberT of operations is given by

T = O(N2/L2)+O(N3β/L6)+O(Nβ L log(Nβ L)). (37)

An exact minimization of this expression with respect toL requires solution of the transce-
dental equation

O(L3) = O(N2−β)

O(1)+O(log(Nβ L))+O(N2β/L7)
. (38)

We will find an approximate solution to this equation satisfying the condition

N2β

L7
¿ 1. (39)

Neglecting this term in the denominator of Eq. (38) and approximating the lower order term
1+ log(Nβ L) by 1 we obtain the approximate minimizer

L0 = N
2−β

3 . (40)

We see that, indeed, condition (39) is satisfied as long asβ < 14/13—a restriction which
can safely be assumed; see Eq. (42) below.

The valueL = L0 leads to an overall operation countT given by

T = O(N(2+2β)/3 log
(
N(2+2β)/3

))
. (41)

An exact solution of Eq. (38) could in principle lead to additional reductions in the overall
complexity of the algorithm, but such reductions are small—of the order of the constants
involved in the “order of magnitude” calculation or logarithmic at best—and they will not
be pursued further here.

The algorithmic prescriptions implicit in the complexity count of Eq. (41) depend on
the parameterβ—which gives a measure of the sizeN of the discretization used for the
scattering surface relative to the sizeO(k2A2) of a grid needed to correctly sample the
wavelength of the incoming radiation alone in a planar surface of sizeA. The parameterβ
equals 1 when the surface discretization step is of order of a wavelength (N = O(k2A2));
for more refined surface discretizationβ is less than 1. Further, the conditionk A≥ Lc(ε)
assumed in the present Case A leads to the inequalityNβ/2 ≥ N(2−β)/3 or β ≥ 4

5, so that,
in the present case we have

4

5
≤ β ≤ 1. (42)

The corresponding values ofT vary fromO(N6/5 log N6/5) toO(N4/3 log N4/3).
We now consider the second alternative, which arises as the maximum in Eq. (34) is

realized by 2c(ε)—which corresponds to the caseβ < 4/5.
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Case B. k A< Lc(ε) = L − log(ε)

log(3)
. In this case we haveM = O(L2) and Eq. (33) gives

T = O(N2/L2)+O(L3 log L3).

The corresponding minimizer satisfies the transcendental equation

O(L5 log L3) = O(N2).

An approximate solution to this equation is given by

L0 = N2/5, (43)

which leads to the operation count

T = O(N6/5 log N).

The restrictionβ < 4/5 on the values ofβ in the present casek A < Lc(ε) follows from
Eqs. (43).

Cases A and B provide the optimal operation counts attainable by our algorithm under all
possible scenarios—that is, for all possible values of the parameterβ. We thus see that for
simple surfaces, for whichβ = 1, the overall operation count isO(N4/3 log N). Complex
surfaces, containing subwavelenght features, however, need to be discretized much more
finely than required by the radiation wavelenght only—thus leading to values ofβ < 1.
In sum: (a) For smooth surfaces, for which our high-order algorithm provides accurate
solutions for small values ofN, the overall complexity count isO(N4/3 log N); (b) for
highly complex surfaces, on the other hand, we haveβ < 4/5, N is large, and the overall
complexity count isO(N6/5 log N).

6. NUMERICAL RESULTS AND PERFORMANCE COMPARISONS

In the following sections we compare our results with those provided by some of the
most competitive algorithms in existence today. Thus, in Section 6.1 we compare the overall
performance of our method with that of FISC [28], in Section 6.2 we compare our Nystrom
high-order integrator to that of [10], and in Section 6.3 we delineate the distinctions between
our approach and the FFT-based algorithms of [2, 23]—with highlights on the advantages
offered by the present approach.

(The following caveat should be taken into account when considering the data presented
in the following sections: Our results correspond to solutions of three-dimensional acoustic
scattering problems—solutions of the Helmholtz equation—whereas the FastScat and FISC
data of [10, 28] correspond to solutions of the Maxwell equations. There are, of course, some
differences between the Helmholtz and Maxwell problems; in particular, the unknowns in
the Maxwell integral equations are two-dimensional vectors, as opposed to the single scalar
unknown arising in the Helmholtz integral equation. However, our methods apply to the
full Maxwell problem, and their performance in that case is expected to be similar to the
one presented here.)

Solutions of the linear systems arising from discretization of Eq. (5) were obtained in all
cases by means of a version of the iterative solver GMRES [27] in fully complex arithmetic—
which leads to a lower number of iterations than the corresponding double-dimension real



100 BRUNO AND KUNYANSKY

TABLE III

Scattering by Spheres of Radii 12λ and 24λ as Computed

by FISC and the Present Algorithm

Algorithm Radius Time RAM Unknowns ε% Computer

FISC 12λ 12 h 1.8 Gb 602112 6.9% SGI Power Challenge R8000
Present (NA) 12λ 6.5 h 24 Mb 26214 0.18% Pentium II 400 MHz
Present 12λ 16 h 120 Mb 87318 0.0014% Pentium II 400 MHz
FISC 24λ 8× 5 h 5 Gb 2408448 7.6% SGI Origin 2000 (8 proc.)
Present 24λ 33 h <600 Mb 349830 0.025% Pentium II 400 MHz

Note.The RCS errorε% is defined in Appendix B.

problem; see [7]. Finally, in all cases we used the valueγ = max{3, A/λ} for the coupling
constant in Eq. (5), whereA is the diameter of the scatterer. Indeed, we have found that this
value ofγ leads to a substantially reduced number of GMRES iterations.

6.1. Comparison with the FMM Approach of [28]

FMM-based algorithms provide considerable acceleration: they run in as little asO
(N log N) operations per iteration. As mentioned in the introduction, to the best of our
knowledge, high-order accuracy has not been demonstrated in FMM computations of wave
scattering. A possible explanation for this fact is that the FMM approach [12, 26] depends
critically on certain mappings which contain multiplication by Hankel functions of high
order. These operations are associated with a substantial amount of ill conditioning, which
leads to accuracy limitations known as the “subwavelength breakdown problem”; see [14,
p. 51; 21, p. 576]. These instabilities may prevail and mask the asymptotic high-order
convergence of any underlying high-order integrator, however accurate. The search for
stable FMM solvers continues to this day [19], and the feasibility of such designs is yet to
be demonstrated. In contrast, the FFT acceleration techniques are stable.

Table III compares the performance of our algorithms to the FMM implementation of
FISC [28]. We see that the present algorithm achieves considerably higher accuracy than
those of [28] with lesser computational resources.

6.2. Nystrom Local Integrator

In Section 3 we have described a quadrature algorithm which evaluates singular integrals
to high order. Although this algorithm is mainly intended for evaluation of adjacent inter-
actions, it can be applied to evaluation of nonadjacent interactions as well. Indeed, letting
η in equation (10) be a function with a large support, perhaps even

η ≡ 1, (44)

leads to a scheme in which a large fraction of the interactions are handled by the adjacency
integrator, resulting in a (high order)O(N2) method.

(The speedup advantages provided by the fast nonadjacency integrator of Section 4 can, of
course, be very substantial, as we demonstrate in Section 6 below. As we will see, however,
the direct quadrature rule defined by (44) is so efficient that, for small- to medium-size
problems, it can perform better than the accelerated scheme.)
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TABLE IV

Convergence Study: Scattering by Sphere of Radius Equal to 2.7λ

Radius—Nonaccelerated Computations

Discretization
Patches Unknowns density ε∞ ε2

6× 17× 17 1350 3 per 1λ 0.1 2.9× 10−2

6× 33× 33 5766 6 per 1λ 9.0× 10−4 1.8× 10−4

6× 65× 65 23790 12 per 1λ 3.6× 10−6 1.4× 10−6

6× 129× 129 93726 24 per 1λ 1.6× 10−8 5.6× 10−9

Note.The error normsε2 andε∞ are defined in Appendix B.

In Tables IV and V we present computations of scattering by a small sphere obtained
from our basic high-order integrator (with a large-supportη and without use of FFT accel-
eration). The convergence study of Table IV demonstrates clearly the high-order nature of
the present local integrator—the corresponding high-order convergence of the accelerator
is demonstrated in the following section. Table IV shows that our integrator can produce
meaningful results from use of as few as three points per wavelenght; subsequent doubling
of the discretization density consistently result in accuracy improvements of two orders of
magnitude.

Table V, on the other hand, provides a comparison of our results with those produced by
the high-order Nystrom and Galerkin discretization techniques of [10] (program FastScat).
In the computing time portion of Table V we only showthe setup time reported in[10],
since in that work a slow LU decomposition was used to solve the resulting linear system.
In the entries corresponding to our algorithm we show thefull computing timerequired
for the solution of the boundary integral equation. The notation NA in our tables indicates
results obtained by means of the nonaccelerated version of our algorithm.

In examining Table V it should be borne in mind that different computers were used
(a Sparc 10 in [10] and a 400-MHz PC in our work) and different problems were solved
(a Maxwell system in [10] and the Helmholtz equation in our work). It should also be
emphasized that, as mentioned above, only the setup time of the high-order integrator of
[10] is shown. We see that our method produces substantially more accurate results than
those of [10], in total computing times which are comparable or smaller than the setup
portions reported in that work.

TABLE V

Performance of Three High-Order Methods: The High-Order Nystrom

and Galerkin Techniques of [10] and the Present Algorithm

Algorithm Radius Time Unknowns ε%

Nystrom [10] 2.7λ 1953 s (setup) 5400 2.2%
Galerkin [10] 2.7λ 38803 s (setup) 5400 0.48%
Present (NA) 2.7λ 294 s 2526 0.1%
Present (NA) 2.7λ 1430 s 5430 0.0045%

Note.The RCS errorε% is defined in Appendix B.
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6.3. Comparison with AIM

As discussed in the introduction, the FFT acceleration technique described in Section 4
differs substantially from all previous FFT-based techniques, including the AIM [2] and the
precorrected technique of [23]. Indeed, the present technique uses surface rather than volu-
metric distributions of equivalent sources, and it therefore leads to (1) substantially reduced
memory requirements, (2) spectrally convergent approximations, and, most importantly, (3)
an improved operation count.

With regard to point (1) we note that, indeed, for anN point discretization, the tradi-
tional FFT surface scattering solvers such as the AIM require anO(N3/2) FFT—and a
correspondingO(N3/2) amount of RAM. The present version of our method requires six
FFTs of sizeO(Nq), 6/5≤ q ≤ 4/3. This implies a significantly lower memory require-
ment, specially for the most complex scattering problems (q = 6/5). Even for a sphere,
for which q = 4/3, the application of our technique to the 350,000 unknown problem of
Table III requires only one-eighth of the memory that would be required by the volumetric
FFT techniques. Together with the spectral convergence properties, such reductions have
allowed us to compute very accurately, and on a personal computer, scattering from the
bodies of sizes close to the largest reported up to now [2, 28]. (Forty IBM SP2 nodes were
used in the latter work to treat scatterers of diameters up to 70λ× 40λ× 15λ; no error
estimates were given in that work. The largest bodies we have treated on a single-processor
400-MHz Pentium II (1 Gb of RAM) are an ellipsoid of diameters 100λ× 25λ× 25λ and a
sphere of diameter 48λ—in both cases with highly accurate results; see Tables III and VI.)

(To facilitate evaluation of errors in the case of ellipsoidal scatterers (Table VI), we used
an off-center source of radiation inside the ellipsoid. The Helmholtz equation was then
solved for the boundary conditions induced on the surface of the ellipsoid by this point
source. The exact solution to this problem outside the ellipsoid equals, quite simply, the
field created by the source itself, so that errors in a numerical solution can be computed
exactly. Table VI presents the corresponding error values for the numerical far field in two
different error norms.)

Two additional advantages arising from the use of surface distributions of equivalent
sources concern the high-order character of the method and its operation count. Indeed,
to increase the approximation order of FFT-based methods (which has not been done be-
fore), one must represent larger groups of true sources by correspondingly larger groups of
equivalent sources in the Cartesian grid. It can be shown that the minimal required number
K of equivalent sources in a group surrounding a portionP of the scattering surface is
proportional to the area ofP. We thus have a choice of how to distribute equivalent sources
aroundP. To do this we point out that the radiation from the true sources inP can be repre-
sentedexactlyby a source distribution on asurface(!) which enclosesP. In other words, it
is sufficientto useO(K ) equivalent sources on the boundaries of cubic cells, and, in fact,it

TABLE VI

Scattering from Large Ellipsoids: Point Source inside the Body

Size No. of iterations Time/iteration RAM Unknowns ε∞ ε2

80λ× 20λ× 20λ 15 5 h 22 min 600 M 691206 1.4× 10−4 2.9× 10−5

100λ× 25λ× 25λ 15 5 h 29 min 600 M 691206 1.1× 10−3 2.4× 10−4

Note.The error normsε2 andε∞ are defined in Appendix B.
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TABLE VII

Accuracy of Two-Face Approximation

kH Body size Equivalant sources/cell Maximum error

8 512 832 2.8× 10−6

12 1728 1792 1.0× 10−7

16 4096 3152 1.8× 10−9

24 13824 7120 4.5× 10−10

Note.The number of sources (monopoles plus dipoles) used corresponds to
a fixed density of equivalent sources (2π per wavelength).

is optimal to do so. Indeed, use of a volumetric distribution of equivalent sources, which is
certainly possible, would lead either to (a) a substantially larger local linear algebra problem
for the determination of the intensities of the equivalent sources—if the volume is filled
with K 3/2 sources—and thus, to an increased operation count, or to (b) a reduced resolution
if only K sources are used volumetrically, since this leads to a coarser spacing of equivalent
sources. (We note that these alternatives do not arise when low-order approximations, such
as the ones in [2, 23], are used.) The two-face equivalent source distributions introduced in
Section 4 constitute further extensions and improvements on the approach based on surface
equivalent-source distributions.

The crude discussion presented above has been substantiated with a complete math-
ematical theory, which is presented in Part II. Here we present the numerical results of
Table VII, which serve as an experimental validation of the proposed acceleration tech-
nique: Using our prescriptions, we will seek to approximate a field of a unit source located
inside a cubic cellci of sizeH—two faces of which are depicted in gray in Fig. 3. The test
source is placed at the middle of an edge ofci , halfway between the two planes containing
equivalent sources. (Our experiments show that this is the most challenging location for
a test source.) The values of the original and the approximating fields are then compared
on the faces of a concentric cubeSi of side 3H . The approximation errors for different
cell sizes are shown in Table VII. The column “Sources” in this table shows the number of
equivalent sources used in one cell. The column “Body size” shows the acoustical sizek Aof

FIG. 4. Scattering by a bean-shaped obstacle; (a) the obstacle; (b) intensity of the scattered field behind the
obstacle (shadow) from a plane wave propagating in thex direction.
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FIG. 5. Ogive geometry presented in Ref. [30].

a hypothetical scatterer which, according to our prescriptions (assuming aO(N4/3 log(N))

algorithm), would optimally use the quoted numbers of equivalent sources (roughly(kH)3).
We note the high accuracy of the approximation for relatively small cells, as well as the
increased accuracy that results as the size of the obstacle is increased.

6.4. Numerical Results for Other Geometries

Of course, no aspect of our algorithm is restricted to consideration of simple shapes,
such as spheres or ellipsoids. To demonstrate this we consider two additional geome-
tries, namely, the bean-shaped scatterer depicted in Fig. 4a and the ogive surface shown in
Fig. 5. The bean-shaped surface is defined by the equation

x2

a2
(
1− α3 cosπz

R

) + (α1Rcosπz
R + y

)2

b2
(
1− α2 cosπz

R

) + z2

c2
= R2,

with a = 0.8, b = 0.8, c = 1, α1 = 0.3, α2 = 0.4, andα3 = 0.1. The largest dimensionA
of this body (in thez direction) is equal to 2R.

In order to investigate the accuracy of the algorithm in this case we first calculated
solutions corresponding to the boundary conditions given by a point source inside the body,
at a distance 0.5 from the origin in the directionθ = 10◦, ϕ = 0◦. As explained in the
previous section, the exact solution for such boundary conditions is known in closed form.
The results of this experiment are given in Table VIII. We see that the performance of the
algorithm is not altered and that none of the good qualities demonstrated above are a result
of the simplicity of the geometries used. Figure 4b presents the forward scattering from the
bean-shaped object of sizeA = 30λ under plane-wave incidence. The near field behind the

TABLE VIII

Scattering by the Bean-Shaped Obstacle: Point Source

SizeA Unknowns No. of iterations Time/iteration ε∞ ε2

30λ 271190 18 1 h 50 min 1.3× 10−3 3.0× 10−4

30λ 617910 18 4 h 28 min 1.5× 10−4 3.2× 10−5

Note.The error normsε2 andε∞ are defined in Appendix B.
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TABLE IX

Scattering by an Ogive

Type Size Unknowns Iterations Time/iteration ε∞ ε2

Nonaccelerated 1λ 1568 20 69 s 2.5× 10−3 1.4× 10−3

Nonaccelerated 1λ 6336 17 12 min 45 s 3.8× 10−5 2.2× 10−5

Nonaccelerated 1λ 25472 17 3 h 27 min 9.8× 10−7 4.8× 10−7

Accelerated 10λ 34112 13 26 min 3.8× 10−4 2.1× 10−4

Accelerated 20λ 34112 14 14 min 6.0× 10−3 2.4× 10−3

Accelerated 20λ 72320 19 67 min 5.4× 10−5 2.1× 10−5

Note.The error normsε2 andε∞ are defined in Appendix B.

object—on a plane parallel to the coordinate planeOyzand located on a distanceA from
the origin—is shown in Fig. 4b.

Table IX displays a set of preliminary results obtained for scattering from a singular
surface, the ogive depicted in Fig. 5, for acoustical sizes (distances between tips) equal to
1λ, 10λ, and 20λ. Here we again used boundary conditions as given by a unit source located
inside the ogive for which, as mentioned above, the exact solution is known. (A convergence
study for plane-wave boundary conditions showed errors consistent with those displayed
in Table IX.) For the larger sizes we used the accelerator described in Section 4; note the
substantial improvements in computing times resulting from the acceleration algorithm.

(In this paper we have not described our general approach to resolution of geometric
singularities. In the particular case of the ogive’s conical singularities, the resolution of
the singular integrands was achieved through a combination of two changes of variables: a
polar change of variables similar to that described in Section 3 followed by a polynomial
change of variables which regularizes the H¨older-type singularity of the underlying density;
complete details are given in [6].)

A brief comment is in order with regard to adaptivity: When refined discretizations are
required to resolve singularities of the scattering surface—as they are indeed implicit in
our treatment of the ogive tips discussed above—the following acceleration scheme can
be used. A global (coarser) Cartesian grid is utilized to compute long-range interactions
between distant portions of the scattering surface, together with as many local (fine) grids
as necessary to appropriately cover the singularity regions. The fine grids are then used
to accelerate short-range interactions within each one of the singular regions, and thus a
multiscale FFT acceleration scheme results.

APPENDIX A: ACCELERATION OF THE LEAST-SQUARES SOLVERS

We show how the solution of the linear systems (22) and (30) can be reduced to solution
of eight linear systems of eight times smaller size. For definiteness we present full details
for the former system

Aξ = b; (45)

as mentioned below, the latter system can be handled similarly.
The vectorξ in (45) contains the intensities of the equivalent sourcesξ = (ξm

` , ξd
` ); the

right-hand sideb = (b1, b2, . . . bncoll ), on the other hand, is a vector containing values of
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the field generated atncoll collocation points on∂Si by the true surface sources, andA is
a (ncoll × nsource) matrix each entryai, j of which is equal to the field of thej th equivalent
source at thei th collocation point.

As shown in Fig. 3, the array of equivalent sources is designed in such a way that an
even number of points in each row and each column of this array lies within each face of
each one of the cellsci . This arrangement induces a useful set of symmetries in the set5`

i .
Indeed, we see that, in coordinates centered at the center ofci , if a point r = (x, y, z) is in
the set then so are each one of the following eight points:

r1 = (x, y, z),

r2 = (x,−y, z),

r3 = (−x,−y, z),

r4 = (−x, y, z),

r5 = (x, y,−z),

r6 = (x,−y,−z),

r7 = (−x,−y,−z),

r8 = (−x, y,−z).

(46)

A set Q of points which, like5`
i , contains all of the points (46) every time it contains

(x, y, z), will be referred to a as an invariant set. Clearly, an invariant set of cardinalityn
splits inton/8 invariant subsets of eight points, each of which is “minimal,” in the sense that
it contains no nontrivial invariant subsets. (We note that a minimal invariant set is generated
by any one of its elements by means of the symmetries (46).)

To take advantage of the symmetries underlying5`
i we also utilize an invariant setQi of

collocation points on∂Si . Further, we reorder the vectorsξ , b and the matrixA so that the
entries corresponding to each minimal invariant group of points are numbered consecutively.
(We place all monopoles first followed by all dipoles, so that the left half of the matrixA
corresponds to the intensities of monopoles, while the right part is related to the intensities
of dipoles.) Under such numbering the matrixA in (45) consists of(nsource/8)× (ncoll/8)

blocksPr,s of size 8× 8; note that the entries of the blockPr,s relating ther th group of
sources to thesth group of collocation points contains the values of the field generated by
the source groupr (with intensities equal to 1) atsth collocation group.

At this stage, appropriate changes of basis can be used to reduce each one of the blocks
Pr,s to diagonal form. We first treat the case in which ther th group of sources is a group of
monopoles; in this case we introduce an orthonormal basis inR8 consisting of the following
vectorsv j ∈ R8, j = 1, . . . , 8:

v1 = 1√
8
(1, 1, 1, 1, 1, 1, 1, 1)T ,

v2 = 1√
8
(1,−1, 1,−1, 1,−1, 1,−1)T ,

v3 = 1√
8
(1, 1,−1,−1, 1, 1,−1,−1)T ,

v4 = 1√
8
(1,−1,−1, 1, 1,−1,−1, 1)T ,

v5 = 1√
8
(1, 1, 1, 1,−1,−1,−1,−1)T , (47)
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v6 = 1√
8
(1,−1, 1,−1,−1, 1,−1, 1)T ,

v7 = 1√
8
(1, 1,−1,−1,−1,−1, 1, 1)T ,

v8 = 1√
8
(1,−1,−1, 1,−1, 1, 1,−1)T .

It is easy to check that, indeed, in the basis (47), the linear operatorPr,s is diagonal;
that is, callingV the (orthogonal and symmetric) matrix(V1, . . . , V8), we have that the
matrix

P̃r,s = VTPr,sV = VPr,sV (48)

is diagonal. To show this we consider the field generated by a set of eight monopoles located
at points making up a minimal invariant subsetQ of 5`

i , and with strengths given by the
coordinates of the vectorv j for some j . Let R, in turn, be one of the minimal invariant
subsets of the set of collocation points. We note that an interchange of two pointsr k1 ↔ r k2

in Q has the same effect on the field as a corresponding permutation of the coordinates of
v j . In particular, each of the maps

xk 7→ −xk, k = 1, 2, 3, (49)

induces a permutation of the coordinates of each of the vectorsv j —which has the same effect
as that caused by the corresponding permutation of monopole locations. By inspection, we
see that the former permutations map a vectorv j either intov j itself or into−v j . Calling
w j the vector of values of the field at the pointsR, taken with an ordering as induced by
Eq. (46), we see that, again, the induced permutations map a vectorw j into w j if v j 7→ v j ,
and they mapw j into −w j if v j 7→ −v j . From this fact it is easy to check thatw j is
proportional tov j and, thus, that the matrix (48) is diagonal as claimed—thus concluding
our treatment of 8× 8 blocks in the monopole case.

Dipoles can be treated in a similar manner: the only difference in this case relates to
the fact that, for an intensity vectorv j as in (47), the transformation (49) fork = ` maps
w j into−w j if v j 7→ v j , and it mapsw j into w j if v j 7→ −v j —that is, the sign changes
are opposite for monopoles and dipoles in thek = ` case; in the casesk 6= ` they are
identical. This situation results from the fact that all dipoles used in Eq. (20) are given by
derivatives in the positivex` direction. Use of dipoles defined by means of normals exterior
to the cell faces gives rise to symmetries identical to those considered earlier, and, thus,
the diagonalization in new variables (which may differ from the actual dipole intensities by
a sign) can be performed by means of the changes of basis given for the monopole case.
We have thus reduced to diagonal form each one of the 8× 8 blocks which make up the
matrixA, and we have thus produced an equivalent sparse system. An additional permutation
of the basis transforms the overall system (45) into a block-diagonal form, with blocks of
size(nsource/8)× (ncoll/8), as claimed.

The block diagonalization described above thus reduces the problem of computing the
QR factorization ofA to that of obtaining the QR factorization of eight matrices of size
(nsource/8)× (ncoll/8). This leads to a 64-fold reduction in the cost of computation of
the QR factorization, and an 8-fold reduction in the cost of solution of each least-squares
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problem. (Note that the latter operation is required for each nonempty cell and for every
iteration of the linear-system solver.)

The symmetries in the linear system (30) can be exploited in an entirely analogous manner
to produce similar cost reductions in the solution of the in-cell Dirichlet problem described
in Section 4.3.

APPENDIX B: ERROR ESTIMATION

The errors mentioned in Sections 6.1 and 6.2 for the codes FISC and FastScat were
originally presented in Ref. [10, 28] asL2 errors in the bistatic radar cross section (RCS)
4π |u∞(x̂)|2 measured in decibels; i.e.,

εdB =
{

1

4π

∫
S2

(
10 log10

∣∣ucalc
∞ (x̂)

∣∣2− 10 log10

∣∣uexact
∞ (x̂)

∣∣2)2
dx̂
}1/2

,

whereuexact
∞ (x̂) anducalc

∞ (x̂) represent the exact and calculated far-field values in the direction
x̂. In Sections 6.1 and 6.2 we preferred to utilize the closely relatedL2 norm of the relative
pointwise error in|u∞(x̂)|2 given in percent,

ε% = 100

{
1

4π

∫
S2

[(∣∣ucalc
∞ (x̂)

∣∣2− ∣∣uexact
∞ (x̂)

∣∣2)/∣∣uexact
∞ (x̂)

∣∣2]2 dx̂
}1/2

,

which gives a direct indication of the number of digits of accuracy in the RCS. It is easy to
see that, for errors of the order of, say, 10% or lower,ε% andεdB are related by a constant
factor:

ε% ≈ 10 ln 10εdB. (50)

The values of the errorε% produced by FastScat and FISC as presented in Sections 6.1 and
6.2 were computed from the values ofεdB given in Ref. [10, 28] by means of Eq. (50).

In Sections 6.3 and 6.4 we study the far-field valuesu∞(x̂) and, to gain a precise insight
into the accuracies obtained for this quantity, we use two different error measures, namely,
the relativeL2 norm

ε2 =
{∫

S2

∣∣ucalc
∞ (x̂)− uexact

∞ (x̂)
∣∣2 dx̂

}1/2/{∫
S2

∣∣uexact
∞ (x̂)

∣∣2 dx̂
}1/2

(51)

and the maximum norm

ε∞ = max
x̂

∣∣ucalc
∞ (x̂)− uexact

∞ (x̂)
∣∣. (52)
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