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We present a new algorithm for the numerical solution of problems of acoustic
scattering by surfaces in three-dimensional space. This algorithm evaluates scattered
fields through fast, high-order solution of the corresponding boundary integral equa-
tion. The high-order accuracy of our solver is achieved through upartifions of
unity together withanalyticalresolution of kernel singularities. The acceleration, in
turn, results from use of a novel approach which, based on high-tiwieiface”
equivalent sourcapproximations, reduces the evaluation of far interactions to evalu-
ation of 3-D fast Fourier transforms (FFTs). This approach is faster and substantially
more accurate, and it runs on dramatically smaller memories than other FFT and
k-space methods. The present algorithm computes one matrix-vector multiplication
in O(N®5logN) to O(N*3log N) operations, wher® is the number of surface
discretization points. The latter estimate applies to smooth surfaces, for which our
high-order algorithm provides accurate solutions with small values ;ahe for-
mer, more favorable count is valid for highly complex surfaces requiring significant
amounts of subwavelength sampling. Further, our approach exhibits super-algebraic
convergence; it can be applied to smooth and nonsmooth scatterers, and it does not
suffer from accuracy breakdowns of any kind. In this paper we introduce the main
algorithmic components in our approach, and we demonstrate its performance with
a variety of numerical results. In particular, we show that the present algorithm can
evaluate accurately in a personal computer scattering from bodies of acoustical sizes
of several hundreds. 2001 Academic Press
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INTRODUCTION

The calculation of electromagnetic scattering from large two-dimensional surfaces
mains one of the most important and challenging problems in computational scier
Roughly, these problems present difficulties, as they require accurate descriptions and
nipulation of highly oscillatory functions. Scattering problems involving one-dimension
integrals have been efficiently treated by means of high-order integrators (including the
ponentially accurate trapezoidal rule and other high-order schemes [13, 18, 22, 24]), wi
reduce dramatically the complexity necessary to meet a given accuracy requirement. |
high-order treatment of problems of scattering by two-dimensional surfaces requires m
more delicate treatments, however [2, 3, 10, 11, 23-26, 28].

In this context, use of high-order integrators is necessary to guarantee accurate resul
is generally not sufficient. In scattering problems requiring a large nuihdrdiscretiza-
tion points, use of a simple-minded integration scheme would usually lead to inordinat
long computing times. A number of fast algorithms for 3-D scattering have been introduc
in the past two decades [2, 3, 11, 12, 23, 26, 28, 29]. These methods are considerably f
than classical nonaccelerated algorithms—they ru@iiN log N) to O(N%?log N) op-
erations in contrast with thé@(N?) operations required by nonaccelerated schemes—ay
thus, they allow for computations involving rather large scattering surfaces. None of
existing fast implementations exhibits high-order convergence, however. As a result,
error of such fast computations turns out to be on the order of a fraction of a decibel
several percent) even for the simplest test scatterers (see [10, 28]).

In this paper we present a fast, high-order algorithm for the solution of problems
acoustic scattering from smooth surfaces in three dimensions (see also [5]). The pre
algorithm computes scattered fieldsGN®°log N) to O(N*3log N) operations. The
latter estimate applies to smooth surfaces, for which our high-order algorithm provic
accurate solutions with small valuesfthe former, more favorable countis valid for highly
complex surfaces requiring significant amounts of subwavelength sampling. A variety
numerical experiments indicate that this algorithm performs exceptionally well and,
fact, that it yields, in competitive running times, accuracies considerably higher than thi
rendered by other methods. Explicit comparisons with a number of well-known solvers
provided in Section 6.

The present algorithm is the result of our attempts to generalize the methods
[8, 9] to problems of scattering by surfaces in space. In that work problems of scatt
ing by two-dimensional heterogeneous bodies and the assopiateat surface integrals
were treated via a combination of spherical wave expansions for the free space G
function (the addition theorem) and the fast Fourier transform (FFT). Further, high-orc
integration was obtained by analytical resolution of singularities. The resulting fast hic
order method is very accurate, and it can handle easily a wide variety of complex electric
large scatterers.

For a variety of reasons the required generalizations of these ideas to problems of sul
scattering are not direct. On one hand, for general cugesinetriess numerical curved-
surface version of the addition theorem would be difficult to obtain. Further, the methc
for analytical resolution of singularities used in [8, 9] cannot be applied directly here dt
in part, to the topological and geometric characteristics of surfaces in three-dimensic
space. Finally, use of in-surface FFTs, which can be incorporated without difficulty f
the geometries treated in [8, 9], does not seem easy to implement in the cases consic
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presently. All of these difficulties can be surmounted, however: the fast, high-order algorit|
presented in this paper is based on analytical resolution of singularities and FFTs.

Our basic high-order integrator involves use of partitions of unity—to deal with topolot
ical characteristics of closed surfaces—and analytical resolution of singularities—to av
costly refinement strategies. Use of this algorithm without acceleration would lead to 1
customary®(N?) operation count (wherdl is the size of the surface grid). The constant
of proportionality in this complexity estimate is rather small, however, so that even withc
acceleration the present high-order integrator is an efficient solver for small- to mediu
sized problems; see Section 6.2 for comparisons with other high-order integrators. For I
problems, however, use of acceleration is imperative.

Two well-known approaches to acceleration have been available for a number of ye
the fast multipole method (FMM) [12, 25, 26, 28, 29] and a broad class of FFT accelera
techniques ankl-space methods [2, 3, 11, 23]. FMM-based algorithms provide consideral
acceleration: they runin as little & N log N) operations per iteration. However, to the best
of our knowledge, high-order accuracy has not been demonstrated in FMM computati
of wave scattering. A possible explanation for this fact is that the FMM approach [12, Z
depends critically on certain mappings which contain multiplication by Hankel functior
of high order. These operations are associated with a substantial amount of ill condition
which leads to accuracy limitations known as the “subwavelength breakdown proble
(see [14, p. 51; 15; 19; 21]). These instabilities may prevail and mask the asymptotic hi
order convergence of any underlying high-order integrator, however accurate. The se:
for stable FMM solvers continues to this day [19], and the feasibility of such designs is
to be demonstrated. In contrast, the FFT acceleration technigues are stable.

The accelerator we introduce is closely related to two of the most advanced FFT meth
developed recently [2, 23]. An important element common to these two methods and
technique is a concept of equivalent (or auxiliary) sources, located on a subset of a
Cartesian grid. In all three cases, the intensities of these sources are chosen to approx
the field radiated by the scatterer, which allows fast computation of the numerous “n
adjacent interactions” through the use of the 3-D FFT. Surface problems such as the «
we consider are treated in [2, 23] by means of equivalent sources locatesinnaetric
grid—in such a way that equivalent sources with nonzero intensities oau@grtesian
nodes adjacent to the scatter&ince the spacing of this Cartesian grid cannot be coar:
ened beyond some threshold, and, further, since the 3-D convolution should be perfori
throughout the whole volume occupied by the body, for surface problems such a schem
quires arO(N%?) FFT. Therefore, previous FFT surface scattering solvers recuikg’/?)
units of RAM and they run i (N¥?log N) operations.

Our algorithm, in contrast, subdivides the volume occupied by the scattererinto a num
of (relatively large) cubic cells, and it places equivalent sourodhe facesfthose cells. As
we will show, such a design significantly reduces the sizes of the required FFTs—to as fey
O(N¥8%) to O(N*?3) points—with proportional improvement in storage requirements an
operation count. Further, it results in super-algebraic convergence of the equivalent so
approximationss the size of the scatterer is increaskdview of its high-order character
and its improved acceleration technique, the present algorithm can evaluate solution
large scattering problems in short computing times, very accurately and with very s
memory requirements; see Section 6.

Interestingly, the two main components of the present approach can be used independ
by of each other. The acceleration method, on one hand, can be used in combination
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any discretization strategy, including Galerkin approaches such as the method of mom
or Nystrom approaches of any kind. This acceleration algorithm is itself extremely accur:
so that the overall accuracy of a given implementation is determined by the correspont
accuracy of the integration rule. Our high-order integrator, on the other hand, which le
to the customar (N?) operation count when used without acceleration, can be combin
with other acceleration techniques if desired. The fast high-order combination we us
very competitive, as is clearly demonstrated by the numerical results of Section 6, anc
the corresponding error analysis presented in the companion paper [20], which, in w
follows, is referred to as Part II.

1. MATHEMATICAL FORMULATION

As we have mentioned, the present implementation of our methods applies to ac
tic scattering by a sound-soft obstacle: outside the obsfaclthe scattered field/ (r)
arising from the incoming wave' (r) is the unique radiating solution of the Helmholtz
equation [13]

AY () + K2y (r) =0, reR3\D, 1)
with the boundary condition
Y1) =—y'(r), reaD, @)

Herek denotes the wavenumber (so that 27 /k is the wavelength), and = |r|. Ex-
tension of our methods to the corresponding electromagnetic Maxwell problem will
presented elsewhere.

A solution to the Helmholtz problem above can be obtained through an integral equat
formulation including the acoustic single- and double-layer potentials,

<&p)(r>=/d>(r,r’><o<r’>ds<r’> 3
aD
and
_[od(r,r) | ,
(Kw)(r)—/—av(r,) (') ds(r). @)
aD

Here®(r,r’) = €XI'="l/4z|r — r'| is the Green function for the Helmholtz equation, and
v(r’) is the external normal to the surface at paintExplicitly, the scattered field can be
obtained easily once the integral equation for the unknown depgity

1 : -
220 + (Ke)(r) =iy (Sp)(r) = y'(r), redD, ®)

has been solved; see [13]. Heras an arbitrary positive constant; appropriate choices o
this parameter can be very advantageous in practice—see Section 6.

Naturally, the possibility of producing fast and accurate solutions for our problems hing
on our ability to evaluate the integrals (3) and (4) accurately and efficiently. In attempti
to develop such accurate and efficient integrators one faces two main difficulties, nam
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accurate evaluation of the singuladjacent interactions-without undue compromise of
speed—and fast evaluation of the voluminous numbeoofdjacentinteractiors-without
compromise in accuracy.

The difficulties connected with the high-order evaluationajacent interactionsre
caused, mainly, by the singular nature of the integral kerid¢isr’) andod(r, r’)/ov(r’)
atr’ = r. While, certainly, the well-known strategy of “singularity subtraction” gives rise
to bounded integrands, integration of such bounded functions by means of classical h
order methods does not exhibit high-order accuracy, since the subsequent derivatives c
integrand are themselves unbounded. Thus, specialized quadrature rules must be deve
and used to achieve high-order-accurate integration. Our high-order adjacency integr:
which is described in detail in Section 3, is based on the use of partitions of unity a
analytical resolution of singularities. This approach compares favorably with previous hic
order methods: it does not require costly setup manipulations and it leads to substant
more accurate and faster numerics. Comparisons of the accuracies and timings prod
by our method with those given by other high-order methods are presented in Section

2. PARTITIONS OF UNITY AND DISCRETIZATION

In order to deal with topological characteristics of closed surfaces and the singular ct
acter of integrands we utilize a strategy based on local parametrizations togethéxeuith
andfloating partitions of unity (POU), as explained in what follows.

To describe the scattering surfade we cover it by anumbef of overlapping coordinate
patchesP¥, k = 1, ..., K (local charts, in the language of differential geometry), suct
that

1. Each patchPk is an open set withidD for k =1, ..., K, and the set$¥, k =
1,...,K, coveraD (Fig. 1).

2. The setP¥ is the image of a coordinate open $ét, contained in the plane, via a
smooth invertible parameterization

rk = r*X, v*) defined for(u, v*) e i, k =1,..., K,
which admits a smooth inverse, and such that the vector product

ark  ark

Vk:Vkuk,kzi s
(U500 = 50 X gk

(6)
is bounded away from zero K. We assume, as we may, that each one of the vetors
is an outward normal, so that the outward unit normafris given by

oo Ve

AR
In practice, we find it advantageous to utilize as large patches as the geometry perr
This approach thus provides a compromise between a desirable global discretization
the impossibility of describing a complicated surface by a single equation.

We will utilize a partition of unity subordinated to this coveringadD, that is, a set of
functions{wX(r), k = 1, ..., K}, such that
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1. w¥ is defined, smooth, and nonnegativé)id, and it vanishes outside, and
2. YK, wk = 1 throughou® D.

Itis not difficult to construct numerically such a POU for a given surface. For efficienc
it is preferable to use a POU with small derivatives, which can be arranged by allowing
substantial overlap of the patch®s. Use of this partition of unity, which will be referred to
asthéfixed” POU, allows us to reduce integration over the surface to evaluation of integr
of smooth functions*(uk, y*) compactly supported in the planar s&t$ multiplied by
the singular kernels. Indeed, defining

P (U 0 = o(r Wk, v - wk Uk, o) ™
we see that an integral over the entire surfabeevaluated at the poimtmay be obtained
as a sum of integrals ovér< fork = 1, ..., K:

K
(S =" / O (r, r* Uk, V%)) U, v Ik, v du dok, (8)
(K )(r)—Z/w KUk, v%) Je(uk, o) duk dok )
¢ v (r<(uk, v8)) U v

At this stage we may describe our discretized problem, which we obtain through c
cretization of the densitigs*(u¥, v*) fork = 1, ..., K. To do this we use Eartesianset
of nodes(uf, v¥) within ¥, and we denote by the corresponding nodal values of our
approximation to the density: these values are the unknowns we seek to obtain. To com
approximations to the integrals (3) and (4) we need to prescribe a quadrature rule wt
utilizing the vaIueso'gm, evaluates the patch integrals in Egs. (8) and (9) to high order.

To design our quadrature rule we first note that the high-order integration problem depe
significantly on whether the integrand is singular within the integration domain. In dete
if r lies outsidePk thenr’ = rk(uX, v%) does not coincide with for (u¥, v*) € 1K, and
the kernels®(r,r’) and ad(r, r’)/av(r’) remain nonsingular within the patch. In this
case we see, further, that, because the densitias, v¥) vanish to high order at the
boundary of the relevant integration domains, the functions to be integrated can actu
be viewed as smooth periodic functions. However, for such functions the trapezoidal 1
yields quadratures with super-algebraic convergence, and our integration problem is sc
in this case. Interestingly, we will utilize trapezoidal rules throughout the paper to constr
an efficient higher order integrator of the singular integrals as well—as we explain in wi
follows.

Let us thus consider the problem of evaluation of an integral over the @itdbr a
pointr within PX. (Note that such a point can correspond to either a riaflevX)) of the
coordinate grid on the patdR¥ or to some nodeu}q, v}) associated with a different patch
PI which overlapsPX.) In this case we will use an infinitely smooth finitely supported
functionn, (r") to split our integration problem in the form

/...ds(r/) :/...(1—nr(r/))ds(r/)+/...nr(r/)ds(r’), (10)

wheren,(r') = 1 for |[r —r'| <rg and n,(r’) vanishes for[r —r’| > r;. The pair (;,
1—n) is, of course, a partition of unity. One such POU needs to be constructed for e:



86 BRUNO AND KUNYANSKY

Support of n,(r) , ..

b

Support of w™.

FIG.1. POU covering and region of singular integration.

target point’: the collection of all such partitions of unity will be referred to as fibat-

ing POU. We see that the integrand containing the fattor n,(r’)) is, again, a smooth
periodic function, and the corresponding integral may be accurately evaluated by mear
the trapezoidal rule; the integral containing the faetar’), in turn, will be evaluated by
means of a specialized high-order singular integrator constructed in Section 3.

(The floating POU allows us to restrict use of a specialized high-order singular integra
(see Section 3) to a neighborhood of each singular point—thus limiting the computatio
cost of such singular integrations and allowing for a fast overall integrator. The support
the floating POU will be chosen in such a way as to optimize the overall complexity of tl
algorithm while maintaining super-algebraic convergence; see Section 4. The ghoite
(largerg, no localization) gives rise to af?(N?) integrator—which, as we will see, can
itself be quite efficient for small- to medium-size problems.)

The POU scheme described in this section is depicted in Fig. 1. We thus see the sur
is covered by large patches which have associated “fixed” partitions of unity. Varying t
target pointr, in addition, we have a two-function “floating” partition of unity. The radial
lines in Fig. 1 relate to the details of our singular high-order integrator, which we describe
the following section. The nonsingular integrals will be computed by means of trapezoi
rules, appropriately accelerated by means of the methods of Section 4.

3. SINGULAR INTEGRATION: VARYING POLAR COORDINATE SYSTEM

In this section we describe the high-order adjacency-integrator that we use for evalua
of the last integral in Eq. (10). In detail, on each pahwe need to integrate numerically
products of a smooth functiofi (U’, v') = X', v/) J (U, V"), (r' (U, v')) with kernels of
each one of the following types:

cosk|R|
Gi(R) = )
' R]
sink|R|
G2(R) = ,
? R

(11)

G3(R) = <kcosk|R| - Smk|R|) RO

IR R?
cosk|R| R - v(r)

IR R2

R-v()

2R?

Gu(R) =

Gs(R) = sink|R|
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Here, for an arbitrary evaluation pointe 9D we have seR =r — rk(u’, v'); the kernels
G1(R) and G, (R) correspond to the single-layer potential, whg(R) throughGs(R)
occur in the double-layer integral.

It is easy to design a high-order integration algorithm for the producfg(of, v") with
G2(r) and Gs(r): these kernels are real analytic functions, and the functigo’, v') is
smooth and vanishes with all its derivatives|ief > r; due to the properties gf (r'(u’, v")).
Thus, the trapezoidal rule provides a high-order quadrature rule in this case.

This approach is not appropriate, however, for any of the remaining kernels. Inde
the kerneldG(r) andGy4(r) are singular, whiléss(r) is discontinuous aR| = 0. As we
have mentioned, our approach to high-order quadrature of such kernels is basedydn
ical resolutionof the associated singularities—that is, reduction of the singular integral
guadrature of smooth functions.

To obtain such analytical resolutions for integrals evaluated at a discretization pc
(u, v) € H* (wherer¥(u, v) = r) we use a system of polar coordinates centered at):

U —u=pcosd, v — v = psing. (Again,r may correspond to either a nod&u, v¥)
of the coordinate grid on the current integration patch or to somen‘ic@d@, v}) associated
with a different patchP! which overlapsPX.)

In this system of coordinates the relevant integrals can be made to read

21
1
l(u,v) = é/Li(u, v,0)d0, =145, (12)
0

where we have set

Lyi(U, v, ) = /fk (p.6) ||£|| cosk|R| dp,
R-v(r
La(u,v,0) = / fk*(p,e)%| cosk|R| U( )d,o, (13)
R.
Ls(u, v, 6) _/fk (0. 9)|| |||R|S|nk|R| v(r)dp,

with
R= R(pa 6) = r*(pv 6) - r(u,’ U/),
r*(p,0) =r(U+ pcosh, v+ psinb),
f&(p, 0) = f(u+ pcosh, v + p sing).

For an infinitely smooth surface the expressions
|l
LUl (14)
IR

R-v()
R2

(15)
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can be easily shown to be infinitely smooth functiong dbr any fixed directior9. In the
limit p — O the values of these expressions can be found explicitly as

lol

A= lim = = |ry(u, v) oSt + r,(u, v) sind| ™2,
r=0|R]
_ R-v() 1 AZ /d?r*(p, 0)
;IJITO R2 =—2Kn(U,U,9)=—2(dpz'V(r) )

wherexn (U, v, 0) is the curvature of the surface at the pai@d, v) in the directiorr,(u, v)
cosh + r,(u, v) sing.

Since all the other factors in the integrands of (13) are smooth functignsofl since the
integrands vanish at the ends of the integration interval together with all their derivativ
the use of the trapezoidal rule provides radial quadratures of high-order accuracy.
trapezoidal rule also provides an appropriate high-order integrator for the angular integra
of Eq. (12), since the corresponding integrandsu, v, 0),i = 1, 4,5, are themselves
smooth periodic functions af. By symmetry, the range of the angular integration can b
reduced from 2 to .

(An additional aspect that needs to be considered in this context concerns cancele
errors. Indeed, since we utilize several parametrizations, itis possible for the qiRRntay
become very small while remaining nonzero. In this case, special care should be excerc
to avoid cancelations errors when evaluating Egs. (14) and (15); indeed, it is not har
compute these expressions by means of appropriate polynomial interpolations and/or Te
expansions—thus avoiding explicit calculation of differences.)

We have thus shown that use of polar coordinates provides an effective analytical res
tion of the singular terms and that it allows high-order integration by means of the trapezoi
rule. The corresponding radial quadrature points, however, do not lie on the Cartesian
associated with the given coordinate patch; see Fig. 2. Thus, use of an appropriate (fas
terpolation strategy is necessary for evaluation of the necessary function values at the r:
integrations points. Efficiency is of utmost importance here, since we use one such p
coordinate transformaticeit each target poingu, v). An efficient interpolation method can
in fact be obtained—as described in what follows.

FIG. 2. Integration in a polar system; empty circles indicate discretization points for the integration wi
respect tg.
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3.1. Efficient Interpolation Scheme

To obtain accurately interpolated values of the integiglftd’, v’) at points lying on the

linesu’ = u+ pcosty, v =v+ psing,, 6, =n¢/n, £ =0, ...,n—1from the corre-
sponding values at the Cartesian nodes we proceed as follows. The integrand is given |
values at the nod€si;, vj), Uy =i AU, vj = jAV,i =—ny, ..., Ny, j =—N,,...,N,. TO

evaluate an integral along the lin@ =u+ pcost,, v =v+ psing,, for 6,
[/4, 37 /4], we utilize a trapezoidal quadrature rule with the discretization Ajgpequal
to Av/ sing,, so that the integrand has to be evaluated at the ppintskApy — v/ sing,.
Note that the quadrature rule is chosen so that all of these points are situated on the str
linesv; = jAv, as shown in Fig. 2.

Since for each fixed value’ = v; = j Av the function is known at equidistant points
Ui =i Au, a one-dimensional interpolation in thedirection suffices to provide all the
required values. To speed up calculations while maintaining high-order accuracy, we
the following interpolation and approximation algorithm:

1. Obtain the Fourier coefficients of the given function for each one of the lihes
vj = jAv by means of the fast Fourier transform.

2. Evaluate the resulting Fourier series and their first derivatives on a much finer eq
paced grid. These evaluations can be obtained efficiently, again, by means of the fast Fo
transform; in all numerical examples provided in the present text the spacing of the refi
grid was 16 times smaller than that of the original grid.

3. On each interval of the refined grid construct an interpolating polynomial of degr
3 such that its values and the values of its first derivatives coincide with those of
trigonometric polynomial at the endpoints of the interval.

As a result of this procedure we obtain polynomial splines that closely approximate
interpolating Fourier series. The use of the fast Fourier transform makes the interpola
times negligible compared to that required by the other stages of the algorithm; evalua
of the splines at the required points requires few multiplications and additions per point :
it is therefore very fast as well. (Clearly our interpolating algorithm, which is based on u
of cubic interpolations, is fourth order accurate in the subgrid spacing. One could certal
use increasingly larger subgrids and Chebyshev interpolation to produce an interpola
technique of super-algebraic convergence. This is a matter of limited interest in pract
however. Indeed, in the cases we have considered, the cubic interpolation method w
16-fold refinement described above matches the accuracy of the underlying trigonome
approximation to0(10~%), in computing times on the order of 1% of the time requirec
by the overall computation. These accuracies are higher than those of interest in all of
problems we have treated, so that the use of more sophisticated interpolating techni
does not seem necessary.)

The radial integrations have thus far been restricted to lines determined by éniles
the interval fr /4, 3 /4]. Integration over the lines corresponding to the complementary s
of angles, € [0, =/4] N [37 /4, 7] can be performed similarly; in this case interpolations
along the lines;; =i Au should be used.

4. EVALUATION OF NONSINGULAR INTERACTIONS

Unlike the singular quadrature problem, the evaluation of nonsingular interactions d
not present challenges from the point of view of accuracy, since in this case all integra
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are smooth and, in view of our smooth patching strategy, the trapezoidal rule yields hi
order accuracy (see [20] for a detailed error analysis). The main task here, however, rel
to acceleration. Indeed, most interactions are of nonadjacency type, and a direct use «
integrator such as the trapezoidal rule would lead to a com@lel#) algorithm.

In the following section we introduce our precise concept of adjacency, which is cent
to our approach. According to this concept (which bears some similarities to the ol
used in other accelerated methods such as the FMM [25] arldghace method [23]), the
nonsingular interactions are further classified into nonadjacent nonsingular interactions
adjacent nonsingular interactions. The evaluation of nonadjacent interactions is discu:
in Sections 4.1-4.3 below. We note that the combination of the integrator of Sectior
with that of Sections 4.1-4.3 accounts for most of the surface interactions but not all
them. Our treatment of certain remaining “adjacent nonsingular” interactions is discusse
Section 4.4—where, in addition, we make specific choices with regard to the parame
defining the floating partition of unity of Sections 2 and 3 and thus complete the descript
of our integration algorithm.

4.1. Two-Face Equivalent Source Representations

Our acceleration strategy is based on certain distributions of “equivalent sources,” wt
we describe in what follows. We begin by considering a cGbef side A containing the
given obstacle, which we then partition into a numheérof identical, nonoverlapping
cubic cellsc; of sideH = A/L, so that there ark cells along each edge of the cube. (For
elongated obstacles a 3-D slab is preferable; for simplicity of presentation, however,
will limit our discussion to a covering by a cube.) We note that each one of the surfs
discretization points (also called “true sources” in what follows) is contained in one of tl
cellsg; typically, however, most cells contain no true sources in their interior. As we sh:
see in Section 4.3, it is necessary for our method to usegelighich do not admit inner
resonances—eigenfunctions of the Dirichlet Laplacian—for the given wavenlkribeis
can be ensured easily by adjusting slightly the cube Aiaad the cell sizéd if necessary.

We seek to substitute the surface sources contained in a culiiclmetertain “equivalent
sources” on the faces aof, in such a way that the field produced by theequivalent sources
coincides, to high-order accuracy, with the field generated bg; ttreie sources at all points
in space that are “not adjacent” ¢o More precisely, the approximation corresponding tc
a cellg will be valid outside the concentric culs of side 3, with exponentially small
errors. As we show below, for computational efficiency it is favorable to use a sequer
of three independent sets of equivalent sources, located on three corresponding se
pointsTI¢, ¢ = 1, 2, 3. To definell¢, note that the union of all cell faces parallel to the
coordinate plan&, = 0 consists of a numbér of parallel squares of sid&. Upon choice
of an equivalent-source step slz¢see Remark 4 and Section 5), we place identical two
dimensional Cartesian grids of points on each one of these squiErésthen defined as
the union of all these grids.

(We note that such distributions of equivalent sources, which by design are contai
in three sets of “sparsely spaced” parallel planes, lead to significant benefits: On one t
they give rise to a high-order accelerator; see also Table VII and Part 1l [20]. On t
other hand, sparsity leads to FFTs which are significantly smaller than those arising fr
fully volumetric equivalent-source distributions [2, 23]—and, thus, to substantially reduc
memory requirements and faster numerics.)
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The high-order equivalent-source representations we seek for nonadjacent fields r
from consideration of spherical harmonics, Bessel and Hankel funct{pia3, jn(-), and
h(’(-), and the spherical wave series

ur) =ik Y Y bumhP KIrDY /v, (16)

n=0 m=—n

which, for a fieldu(r) generated by sources inside a sphBgeof radiusa, provides a
convergent expansion of the field everywhere out8gleRoughly speaking, at a distance
D = |r| from the center ofB,, the error in a truncated spherical wave expansion (1€
containing then < n; terms only,

u(r) =ik >y > bamhP KIrDY /v, (17)

n=0 m=-n

(3))

for sufficiently largen,; see Remark 4. This estimate, which follows from the asymptoti
properties of the special functions and consideration of the addition theorem [13],

is of order

gklr=r| ] © n . _
=ik > > WO KDY /I jkir DRI, (19)

A|r — /| i

is discussed in detail in [20].

It follows from these considerations that, at a distaBciEom a given cellg;, the fields
generated by the -surface and; -equivalent sources can be approximated with a prescribe
accuracy by truncated spherical wave expansions of the form (17) with an appropriate v
of n;. However, these expansions converge slowly in atleast some of the 26 cells surroun
¢i. This leads to our precise concept of adjacency: two poiatglr’ in space are considered
to be adjacent if they both lie within the same aglbr if one lies within a celk; and the
other lies in any of the 26 neighboring cells. Equivalently, a poiatc; is adjacent to every
pointr’ € §; and nonadjacent to every poiritg ;.

We can now describe the specifics of our implementation. For a fixed value-df, 2,

3, we associate to each cellequivalent sources (monopolg%“)%(r, r{ ;) and dipoles
90 (r, rf;)/0x of intensity& ™" andg'T", respectively), which are placed at points
rij, j =1,...,Me contained within certain subsely of I1‘. In detail, the seflf
consists of all the points ifi* which lie within the union of two circular domains concentric
with (and containing) the faces ofin IT¢, as shown in Fig. 3. The radius of these domain:
is chosen to be equal to—or slightly larger than—the length of the diagonals of the fac
experimentally it was found that increase of the radius up to 40% leads to somewhat hic
accuracy and relatively small increases in computing times.

Remark 1. As shown in Part 1l [20], use of a combined set of monopoles and dipols
does indeed suffice to provide convergent approximations from the types of two-face |
resentations we use. Two-face distributions of one type, either monopole or dipole type
not give rise to such convergent approximations, however.
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FIG. 3. Locations of the equivalent sources (black circles); gray squares indicate faces af, a cell

Like the field y&-"'® radiated by theg;-true sources, the fielg:%9 radiated by the
¢i-equivalent sources
(20)
r’=ri"j

can be expressed through an expansion of the form (16). Let us take anyabfiehe
truncation parameter such that the truncated expansion (17) correspondifigt® ap-
proximates this quantity to within the prescribed error tolerance. We thus seg %4t
can be approximated by %-€9 at points nonadjacent tq and to within a given toler-
anceO(e) if and only if the intensities of the equivalent sources can be selected in sucl
way that:

lMequiv
2 AD(r,r’)
. d )
v = 3 (Eolerty) 4o 0
4

=1

1. The coefficients of the spherical wave expansion (16)fi''® are approximated
“well” by the corresponding expansion coefficients§dr-€9for alln < n;. More precisely,
the truncated spherical wave expansion of orgdor these two fields should differ in no
more thanD(e) everywhere outsids;

2. Then;-tail (i.e., the sumsfan > n;) of the spherical wave expansion ffi-¢% should
be of O(¢) or less everywhere outsids.

In practice, it was found that these two conditions can be guaranteed to hold provide
MeWV > n? (21)

equivalent sources are used, and provided the intensities are chosen so that the v
formed by the differenceg/%-9(r) — y%-"e(r)) (asr varies over anumber®! ~ 2Meaiv

collocation points oS;) is minimized in the mean-square norm. Thus, the intensities al
obtained as the least-squares solution of an overdetermined linear system of the form

At =b, (22)

whereA is ann® x MeaVmatrix. Note that this prescription does not require explicit use
of the spherical wave expansions (16), and thus it completely bypasses costly evaluat
of special functions.
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Remark 2. Since all the cellg; are identical, the matriA above is one and the same
for all thec;’s. Thus, the QR decomposition &f (which we use to solve the least-squares
problem under consideration) need only be computed once and stored for repeated us

Remark 3. Our choice for the positions of the equivalent sources and similar choic
for the corresponding positions of tmé°" collocation points can lead to substantial re-
ductions in computation time. Our prescription in these regards takes advantage of ce
symmetries which can be exploited to induce a block diagonal structure in the matrix
and, consequently, a significant eightfold reduction in the computational expense requ
to produce the intensities of the equivalent sources; see Appendix A.

Remark 4. The asymptotic regime of exponential decay (18) for the error in the appro
imation (17) is achieved for values of > 2k A/L; that is,n; must exceed # times the
acoustical size of the cells (measured)psee Part I1[20]. Thus, the parameMPI“V > n2
must exceed the valu@k A/L)? for the substitution to exhibit exponentially accurate ap-
proximations. As shown in Part Il, the prescriptibtf9'" = n2 with n, given by

KA, log®) } (23)

Ny = max , =
t { L log(3)
givesrise to errors aP(¢) in the equivalent source approximations; the associated maxin
step sizéh = h™®in the Cartesian grids dfi¢ is then, approximatelyy™® ~ (2A)/(Lny).

Remark 5. The surface distributions of equivalent sources we use are not unrelatec
those occurring in the Laplace solver of [1]. Indeed, that FMM algorithm uses distributio
of equivalent sources on spherical surfaces to represent the fields generated by portions
scattering surface. Such spherical arrangements are not suitable for use in conjunction
FFTs. Our equivalent sources, in contrast, like those arising in &tBpace methods, are
designed to work as part of FFT-based algorithms. Our two-face distributions of equival
sources are useful in that they give rise to reduced FFTs and thus to substantially red
computing times and memory requirements.

4.2. FFTs: Nonadjacent Field Values on a Sparse 3-D Grid

The methods introduced in the previous section allow us to identify the field produced
the portion of the scattering surface contained within agellith the corresponding field
produced by the equivalent sourcesidheverywhere outsidé . In other words, recalling
the definition of adjacency of Section 4.1, we defire™e(r) andy"2"e(r) as the fields
induced at point by the adjacent and nonadjacent true sources, respectively, so that

V() = YR + g PO, (24)

Further, denoting by "®€9¢(r) the field induced at point by all the equivalent sources
in TT¢ nonadjacent to (¢ = 1, 2, 3), we may write

Y(r) = Y1) + ¢ "2V (r) + Oe), (25)

where the)(¢) term is the prescribed numerical tolerance in the equivalent source appr
imation; see Section 4.1.
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The acceleration algorithm utilizes a quantity related to those occurring in Eq. (2!
namely, the fieldy ¢ (r) produced at a grid pointby all of the equivalent sources I
except the one at poimt—where the Green function is infinite. Using the notation

’

o(r,r") forr #r’ od(r,r'y/ox, forr #r’
d>*(r,r/)={( )fo”fr/ l“(”‘)K(r,lr/)={ (r,r)/o% .

forr =r’
(26)

we have

w(*)l(r) — Z (Er(’m)g q)*(r’ r/) + Sr(/d)Z e (r, r/)) (27)

r'elnt

(compare with (20)). Here the intensitiﬁ%’w andér(,d)e denote the sum of all intensities of
equivalent sources located at paifit

(m)E Z sl(m)ﬁ’ (d)Z Z $|(d)£- (28)

ré._r r‘._r/

We note that the functiong®¢ (¢ = 1, 2, 3) do not approximate any of the physical
quantities under consideration since, at any givena D, the quantityy ¢ (r) contains
only poor approximations of contributions from sites adjacent. tBubtraction of these
poor approximations would then complete the evaluatiog 8%€9¢(r).

The importance of the quantitigs™* lies, of course, in that, being exact convolutions in
a Cartesian grid, they can be evaluated accurately and efficiently by means of the fast Fo
transform. Having obtainegl ¢, one can proceed to computd'®e9¢ by subtracting from
¥ ¢ contributions of adjacent cells. Since the equivalent sources are located in the node
a Cartesian grid, the contributions from adjacent cells are given by (small) three-dimensic
convolutions—which can be evaluated efficiently by means of FFTs. Upon subtraction,
values ofyr "2e9¢ result. These values provide good approximations for the fi€lg'ue;
usingy ("&89¢ for ¢ = 1, 2, 3 we thus obtain approximations fgr"2t'u® throughout the
boundary of each cell;c The evaluation of the surface values of such nonadjacent trt
fields is the subject of the following section.

4.3. Evaluation of the Surface Values#%f#©4

Oncey ™28 (1) js known forr on the faces of a cet}, this function can be evaluated
at points insideg; as the solution of a Dirichlet problem. Such Dirichlet problems can b
solved uniquely and in a stable manner since the size of the cells has been chosen st
internal resonances do not occur (Section 4.1); see also [20] for an error analysis in tt
regards.

In order to obtain the field inside a cell, we use a discretized plane wave expansion [:

nwave

pramer) & "¢ expikujr, (29)

=1

whereu; are unit vectors defining directions of wave propagation, ame (¢4, &, . . .,
Znwave) is @ vector of expansion coefficients. Singé*™e(r) does not contain contributions
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from cells adjacent to, ¥"2°9(r) this expansion converges exponentially fast with increas
ing number of wavevectors; ; see [20] for details. A number of other representations coul
be used in the solution of our Dirichlet problems, including an inner-field spherical wa
expansion; the expansion (29) seems advantageous in that it does not require evaluati
special funcions.

The choice of the unit vectors in the representation (29) is rather arbitrary: it is or
necessary for the vectong to sample the surface of the unit sphere with a sufficient degre
of uniformity. The prescription we use for the distribution of thges leads to significant
reductions in the operation count; see Appendix A for details. The coeffigjents the
other hand, are chosen so that the expansion (29) matches the field values on the bou
of ¢;. As in Section 4.1, stability considerations require discretizations and plane wave
be set up in such a way that the associated linear algebra problem is overdetermined, i
present case by a factor oflor less—depending on the acoustical size of the cglls

The matching procedure thus requires solution of an overdetermined system of lir
equations

Bt =d, (30)

whered = (dy, da, . .., dyace) iS @ vector containing known values ¢f">"® at all the
equivalent-source pointlsfj contained in the boundary af, andB is annface x nvave
matrix (n@°® > N9, Note that not all of the; M®a" equivalent source locations ii{
are used here as matching points; see Fig. 3. This least-squares problem is solve
means of a QR decomposition; as in Section 4.1, since the geometry of all cells is ident
the QR factorization oB needs to be computed only once, as factors can be stored"
repeated use.

4.4. Adjacent Nonsingular Interactions

The floating POUy, of Section 2 was introduced as a means to reduce the domain
which the polar coordinate integration of Section 3 is operative—thus avoiding the st
stantialO(N?) overall operation count which would otherwise be required—but the si:
of the support ofn was left unspecified. The FFT acceleration technique c
Sections 4.1-4.3, in turn, effectively accelerates the evaluation of nonadjacent contr
tions, that is, the contribution to a call from sources lying outside the culs. It is
therefore reasonable to restrict the supporj,ab lie within S; for everyr € ¢;. Thus our
prescription is: Taking; to equal the cell sizél, n; (r') is aC* function ofr’, n, (r') = 1 for
[r —r’| <rgandn(r’) vanishes fotr — r’| > r;. The specific value af and the particular
function to be used have limited impact as long as the derivativesarfe not excessively
large. In fact, it is advantageous to set up this floating POU in such a way that its spe
derivatives are as small as possible: a specific form we have used frequently is

26— 1/t
t—1

() =evr, t=|r—r|/r.

To complete our integration algorithm we need to add the integral containing the te
(1—#n;) in Eqg. (10) over the portion of the scattering surface which lies wiginTo do
this we simply add the corresponding point sources at the Cartesian discretization poin
parameter space whose images lie insidéhe overall procedure results in spectral accu:
racy, since together with the integral over the nonadjacent sources (given by the acceler:
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scheme), this makes up the trapezoidal rule sum for the first integral on the right-hand
of Eqg. (10), whose integrand is a smooth periodic functio(uirv) parameter space.

Sections 2—4 provide a full description of our integration algorithm for any given choic
of the discretization parametel$, L, and M9V, Various rationales leading to optimal
choices of these parameters are discussed in the following section.

5. DISCRETIZATION PARAMETERS AND OPERATION COUNT

The explicit algorithmic prescriptions introduced in the previous sections depend on th
main discretization parameters, namely, the nuniberf surface discretization points, the
numberL of planes defining the sef$‘, and the numbeM®a~ of equivalent sources in
each one of the sefd/. Alternatively, we may characterize our discretizations by mean
of the three number@\, L, M), whereM is the total number of points within each one of
the planes definingl‘. (With reference to the equivalent-source spadirigtroduced in
Section 4.1 we have = A/+/M.) Note that

27 M /L2 < MUY < 47 M/L2, (31)

The precise relation betwed®d"VandM depends on the radius used for the domalfs
see Section 4.1.

Specific choices of the parametéh$, L, M) are to be made to account for the charactel
of each problem under consideration. Thus, for example, the nuMkrdiscretization
points must be selected in order to correctly sample acoustic wavelengths and scatte
surfaces. The parametdrsand M, however, ought to be chosen to optimize the operatiol
count for a prescribed accuragy

To analyze and optimize the complexity of our algorithm we need to consider sor
basic associated quantities; these parameters, all of which can be expressed in terr
(N, L, M), are listed in Table I. With these quantities it is not difficult to determine th
number of operations required by the various stages of our algorithm.

Let us consider, for example, the cost of the most important part in our accelerat
algorithm, namely, the convolution step. There are in fact six convolutions in this step, t
for each of the three sets of equivalent source planes, one for the monopole distribution,
the other for the dipole distribution. Each one of these convolutions is computed throt
an FFT on the three-dimensional grid of equivalent sources. Since, as stated in Tab

TABLE |
Number of Elements in Various Discretization Sets

Set Number of elements
Surface discretization points N
Planes defining the sel$, L

Equivalent sources on each of thig planes M

Equivalent sources along the edge of acell MY2/L

T MEAUV ~ 272 M /L2 to 47 M /L2
Nonempty cells O(L?

Surface points in each nonempty cell, average)(N/L?)
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TABLE Il
Number of Operations Required by Various Stages of the Algorithm

Operation Flops (per iteration)
Trigonometric interpolation (Section 3.1) O(NlogN)
Evaluation of adjacent interactions (Sections 3 and 4.4) O(N2?/L?)
Evaluation of the vectors andd for all cells (Sections 4.1 and 4.3) O(MN/L?)
Solution of all least-squares problems (Sections 4.1 and 4.3) O(M?/L?)
Convolution (Section 4.2) O(MLlogML)

Evaluation of surface values of the equivalent-source field (Section 4.3) O(MN/L?)
Correction of the surface values of the equivalent-source field (Section 4.2)(M log(M/L?))

a set ofL planes each containinlgl equivalent sources is used, there is a totalL M
equivalent sources in each convolution. Thus, the convolution step reduces to evaluatic
a fixed number of FFTs of siz@(L M), and thus, the total cost of the convolution step is
O(LM log(LM)). All other necessary counts result similarly from the parameters listed
Table I. The resulting complexities are listed in Table .

In order to proceed with the parameter optimization we may safely assume that
relation

M < O(N) (32)

holds. Indeed, in view of Eq. (23M®%Vis roughly of the same order of magnitude as the
number of points in the face of a cell as dictated by the Nyquist frequency, so thais
approximately equal to the number of points required to Nyquist-sample a surface of ¢
A’—while N must be at least that and possibly larger if subwavelength surface featu
need to be resolved. (Generally, a significant amount of subwavelength sampling is requ
to accurately resolve geometric features of a given surface, although simple, slowly vary
geometries such as spheres can be sampled at rates determined by the radiation wave
only.)

Under the condition (32), the total number of operati@is-which equals the sum of
the quantities in the right column of Table ll—is given by

T = O(N?/L%) + O(M3/L® + O(MLlogML). (33)

In view of the relations

. 2kA _—lo
M Eauv ntz» ne = max{— 2 ace)

equiv __ 2
L2 093 } and M = 0O(M/L9) (34)

(see (21), (23), and (31)), it follows that for a givixedvalue of N, 7 actually depends on
a single parameter, s&¥, = 7 (L), and thus, that once the surface sampling rate has be
chosen, the optimal discretization parameteendM can be obtained as the solution of a
one-dimensional minimization problem.

To minimize7 we define

log(e)

c(e) = — 093’

(35)
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and we consider the two alternatives that arise as the maximum in Eq. (34) is realized ei
by 2k A/L or by Z(¢).

Case A. X2 > c(e). In this case we havdl = O(k?A?); to simplify the optimization
calculation we define an exponeghby

B(N.kA) = log(k’A?)/logN, (36)
so that the total numbéF of operations is given by
T = O(N?/L?) + O(N*¥*/L® + O(NPL log(NPL)). (37)

An exact minimization of this expression with respecLteequires solution of the transce-
dental equation

O(L3 = ONT) (38)
~ O1) + O(og(NFL)) + O(N?#/L7)’
We will find an approximate solution to this equation satisfying the condition
N28
7 <1 (39)

Neglecting this term in the denominator of Eq. (38) and approximating the lower order te
1+ log(N£L) by 1 we obtain the approximate minimizer

2B
Lo=N7=. (40)
We see that, indeed, condition (39) is satisfied as long &sl4/13—a restriction which
can safely be assumed; see Eq. (42) below.
The valueL = Lo leads to an overall operation countgiven by

T = O(N®2PBlog (N@H2P/3)), (41)

An exact solution of Eq. (38) could in principle lead to additional reductions in the over:
complexity of the algorithm, but such reductions are small—of the order of the consta
involved in the “order of magnitude” calculation or logarithmic at best—and they will nc
be pursued further here.

The algorithmic prescriptions implicit in the complexity count of Eq. (41) depend o
the parametep—which gives a measure of the sikkof the discretization used for the
scattering surface relative to the si@&k?A?) of a grid needed to correctly sample the
wavelength of the incoming radiation alone in a planar surface of&iZéne parametes
equals 1 when the surface discretization step is of order of a wavelelgh@ (k®A?));
for more refined surface discretizatigris less than 1. Further, the conditigi > Lc(¢)
assumed in the present Case A leads to the inequdfity > N@#/3 or g > £, so that,
in the present case we have

<B=Ll (42)

gl b

The corresponding values @f vary from ©O(N®5log N%) to O(N¥3log N¥/3).
We now consider the second alternative, which arises as the maximum in Eq. (34
realized by 2(e)—which corresponds to the cage< 4/5.
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CaseB. kA< Lc(e) =L ’lc',‘;?éf) In this case we havlsl = O(L?) and Eq. (33) gives

T = O(N?/L? + O(L3log L®).
The corresponding minimizer satisfies the transcendental equation
O(L%log L% = O(N?).
An approximate solution to this equation is given by
Lo = N?5, (43)
which leads to the operation count
T = O(N*®logN).

The restriction8 < 4/5 on the values of in the present cadeA < Lc(e) follows from
Egs. (43).

Cases A and B provide the optimal operation counts attainable by our algorithm unde
possible scenarios—that is, for all possible values of the parafete thus see that for
simple surfaces, for which = 1, the overall operation count &(N*3log N). Complex
surfaces, containing subwavelenght features, however, need to be discretized much
finely than required by the radiation wavelenght only—thus leading to valugs-<ofl.

In sum: (a) For smooth surfaces, for which our high-order algorithm provides accur
solutions for small values o, the overall complexity count i€©(N*2log N); (b) for
highly complex surfaces, on the other hand, we héwe 4/5, N is large, and the overall
complexity count iS2(N®%log N).

6. NUMERICAL RESULTS AND PERFORMANCE COMPARISONS

In the following sections we compare our results with those provided by some of t
most competitive algorithms in existence today. Thus, in Section 6.1 we compare the ove
performance of our method with that of FISC [28], in Section 6.2 we compare our Nystrc
high-order integrator to that of [10], and in Section 6.3 we delineate the distinctions betwe
our approach and the FFT-based algorithms of [2, 23]—with highlights on the advanta
offered by the present approach.

(The following caveat should be taken into account when considering the data presel
in the following sections: Our results correspond to solutions of three-dimensional acou
scattering problems—solutions of the Helmholtz equation—whereas the FastScatand F
data of [10, 28] correspond to solutions of the Maxwell equations. There are, of course, s
differences between the Helmholtz and Maxwell problems; in particular, the unknowns
the Maxwell integral equations are two-dimensional vectors, as opposed to the single sc
unknown arising in the Helmholtz integral equation. However, our methods apply to t
full Maxwell problem, and their performance in that case is expected to be similar to 1
one presented here.)

Solutions of the linear systems arising from discretization of Eq. (5) were obtained in
cases by means of a version of the iterative solver GMRES [27] in fully complex arithmetic
which leads to a lower number of iterations than the corresponding double-dimension
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TABLE 11l
Scattering by Spheres of Radii 12 and 24\ as Computed
by FISC and the Present Algorithm

Algorithm Radius  Time RAM Unknowns gy Computer

FISC 120 12h 1.8Gb 602112 8% SGI Power Challenge R8000
Present (NA) 12 6.5h 24 Mb 26214 18% Pentium 11 400 MHz

Present 12 16h 120Mb 87318 ©014% Pentium Il 400 MHz

FISC 24. 8x5h 5Gb 2408448 B% SGlI Origin 2000 (8 proc.)
Present 24 33h <600Mb 349830 ®M25% Pentium Il 400 MHz

Note.The RCS errok, is defined in Appendix B.

problem; see [7]. Finally, in all cases we used the value max{3, A/} for the coupling
constantin Eq. (5), wherA is the diameter of the scatterer. Indeed, we have found that th
value ofy leads to a substantially reduced number of GMRES iterations.

6.1. Comparison with the FMM Approach of [28]

FMM-based algorithms provide considerable acceleration: they run in as litite¢ as
(NlogN) operations per iteration. As mentioned in the introduction, to the best of o
knowledge, high-order accuracy has not been demonstrated in FMM computations of w
scattering. A possible explanation for this fact is that the FMM approach [12, 26] deper
critically on certain mappings which contain multiplication by Hankel functions of higl
order. These operations are associated with a substantial amount of ill conditioning, wt
leads to accuracy limitations known as the “subwavelength breakdown problem”; see |
p. 51; 21, p. 576]. These instabilities may prevail and mask the asymptotic high-or
convergence of any underlying high-order integrator, however accurate. The search
stable FMM solvers continues to this day [19], and the feasibility of such designs is yet
be demonstrated. In contrast, the FFT acceleration techniques are stable.

Table 1ll compares the performance of our algorithms to the FMM implementation
FISC [28]. We see that the present algorithm achieves considerably higher accuracy
those of [28] with lesser computational resources.

6.2. Nystrom Local Integrator

In Section 3 we have described a quadrature algorithm which evaluates singular integ
to high order. Although this algorithm is mainly intended for evaluation of adjacent inte
actions, it can be applied to evaluation of nonadjacent interactions as well. Indeed, let
n in equation (10) be a function with a large support, perhaps even

n=1, (44)

leads to a scheme in which a large fraction of the interactions are handled by the adjace
integrator, resulting in a (high ordef)(N?) method.

(The speedup advantages provided by the fast nonadjacency integrator of Section 4 cz
course, be very substantial, as we demonstrate in Section 6 below. As we will see, howe
the direct quadrature rule defined by (44) is so efficient that, for small- to medium-si
problems, it can perform better than the accelerated scheme.)
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TABLE IV
Convergence Study: Scattering by Sphere of Radius Equal to.2\
Radius—Nonaccelerated Computations

Discretization

Patches Unknowns density Eoo &2
6 x 17 x 17 1350 3peri 0.1 29 x 102
6 x 33 x 33 5766 6 perd 9.0x 10* 18x10™*
6 x 65 x 65 23790 12 peri 36x10°% 14x10°
6 x 129x 129 93726 24 peril 16x 108 5.6 x 10°

Note.The error norms, ande,, are defined in Appendix B.

In Tables IV and V we present computations of scattering by a small sphere obtail
from our basic high-order integrator (with a large-suppoaind without use of FFT accel-
eration). The convergence study of Table IV demonstrates clearly the high-order natur
the present local integrator—the corresponding high-order convergence of the accele
is demonstrated in the following section. Table IV shows that our integrator can prodt
meaningful results from use of as few as three points per wavelenght; subsequent doul
of the discretization density consistently result in accuracy improvements of two orders
magnitude.

Table V, on the other hand, provides a comparison of our results with those producec
the high-order Nystrom and Galerkin discretization techniques of [10] (program FastSc
In the computing time portion of Table V we only shdle setup time reported if10],
since in that work a slow LU decomposition was used to solve the resulting linear syst
In the entries corresponding to our algorithm we showftilecomputing timerequired
for the solution of the boundary integral equation. The notation NA in our tables indicat
results obtained by means of the nonaccelerated version of our algorithm.

In examining Table V it should be borne in mind that different computers were us
(a Sparc 10 in [10] and a 400-MHz PC in our work) and different problems were solv
(a Maxwell system in [10] and the Helmholtz equation in our work). It should also k
emphasized that, as mentioned above, only the setup time of the high-order integratc
[10] is shown. We see that our method produces substantially more accurate results
those of [10], in total computing times which are comparable or smaller than the se
portions reported in that work.

TABLE V
Performance of Three High-Order Methods: The High-Order Nystrom
and Galerkin Techniques of [10] and the Present Algorithm

Algorithm Radius Time Unknowns £t
Nystrom [10] 2.7 1953 s (setup) 5400 2.2%
Galerkin [10] 2.7 38803 s (setup) 5400 0.48%
Present (NA) 2.X 294 s 2526 0.1%
Present (NA) 2.X 1430s 5430 0.0045%

Note.The RCS erroky, is defined in Appendix B.
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6.3. Comparison with AIM

As discussed in the introduction, the FFT acceleration technique described in Sectic
differs substantially from all previous FFT-based techniques, including the AIM [2] and tt
precorrected technique of [23]. Indeed, the present technique uses surface rather than
metric distributions of equivalent sources, and it therefore leads to (1) substantially redu
memory requirements, (2) spectrally convergent approximations, and, most importantly,
an improved operation count.

With regard to point (1) we note that, indeed, for ldnpoint discretization, the tradi-
tional FFT surface scattering solvers such as the AIM requir€@N®?) FFT—and a
corresponding?(N®2) amount of RAM. The present version of our method requires si;
FFTs of sizeO(N%), 6/5 < q < 4/3. This implies a significantly lower memory require-
ment, specially for the most complex scattering problems-(6/5). Even for a sphere,
for which g = 4/3, the application of our technique to the 350,000 unknown problem ¢
Table Il requires only one-eighth of the memory that would be required by the volumet
FFT techniques. Together with the spectral convergence properties, such reductions
allowed us to compute very accurately, and on a personal computer, scattering from
bodies of sizes close to the largest reported up to now [2, 28]. (Forty IBM SP2 nodes w
used in the latter work to treat scatterers of diameters up tox780r x 15; no error
estimates were given in that work. The largest bodies we have treated on a single-proce
400-MHz Pentium Il (1 Gb of RAM) are an ellipsoid of diameters 180251 x 251 and a
sphere of diameter 48—in both cases with highly accurate results; see Tables Ill and VI

(To facilitate evaluation of errors in the case of ellipsoidal scatterers (Table VI), we us
an off-center source of radiation inside the ellipsoid. The Helmholtz equation was th
solved for the boundary conditions induced on the surface of the ellipsoid by this po
source. The exact solution to this problem outside the ellipsoid equals, quite simply,
field created by the source itself, so that errors in a numerical solution can be compt
exactly. Table VI presents the corresponding error values for the numerical far field in t
different error norms.)

Two additional advantages arising from the use of surface distributions of equivals
sources concern the high-order character of the method and its operation count. Ind
to increase the approximation order of FFT-based methods (which has not been done
fore), one must represent larger groups of true sources by correspondingly larger grouy
equivalent sources in the Cartesian grid. It can be shown that the minimal required nur
K of equivalent sources in a group surrounding a porflonf the scattering surface is
proportional to the area &?. We thus have a choice of how to distribute equivalent source
aroundP. To do this we point out that the radiation from the true sourcésdan be repre-
sentedexactlyby a source distribution onsurfacd!) which enclose$. In other words, it
is sufficiento useO(K) equivalent sources on the boundaries of cubic cells, and, intfact,

TABLE VI
Scattering from Large Ellipsoids: Point Source inside the Body

Size No. of iterations Time/iteration RAM Unknowns & &
801 x 200 x 20n 15 5h22min  600M 691206 .4x10* 29x10°
1000 x 251 x 251 15 5h29min 600M 691206 .1x10° 24x10*

Note.The error norms, ande,, are defined in Appendix B.
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TABLE VII
Accuracy of Two-Face Approximation

kH Body size Equivalant sources/cell Maximum error
8 512 832 B x10°

12 1728 1792 Dx 1077

16 4096 3152 Bx107°

24 13824 7120 5 x 1071

Note.The number of sources (monopoles plus dipoles) used corresponds to
a fixed density of equivalent sourcesr(per wavelength).

is optimal to do solndeed, use of a volumetric distribution of equivalent sources, which
certainly possible, would lead either to (a) a substantially larger local linear algebra probl
for the determination of the intensities of the equivalent sources—if the volume is fills
with K %2 sources—and thus, to an increased operation count, or to (b) a reduced resolt
if only K sources are used volumetrically, since this leads to a coarser spacing of equive
sources. (We note that these alternatives do not arise when low-order approximations,
as the onesin [2, 23], are used.) The two-face equivalent source distributions introduce
Section 4 constitute further extensions and improvements on the approach based on st
equivalent-source distributions.

The crude discussion presented above has been substantiated with a complete 1
ematical theory, which is presented in Part Il. Here we present the numerical result:
Table VII, which serve as an experimental validation of the proposed acceleration te
nique: Using our prescriptions, we will seek to approximate a field of a unit source loca
inside a cubic celt; of size H—two faces of which are depicted in gray in Fig. 3. The tes
source is placed at the middle of an edgejohalfway between the two planes containing
equivalent sources. (Our experiments show that this is the most challenging location
a test source.) The values of the original and the approximating fields are then comp:
on the faces of a concentric culsg of side 3H. The approximation errors for different
cell sizes are shown in Table VII. The column “Sources” in this table shows the numbet
equivalent sources used in one cell. The column “Body size” shows the acousti¢ahsite

A

(b)

FIG. 4. Scattering by a bean-shaped obstacle; (a) the obstacle; (b) intensity of the scattered field behin
obstacle (shadow) from a plane wave propagating irxttgection.
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FIG.5. Ogive geometry presented in Ref. [30].

a hypothetical scatterer which, according to our prescriptions (assundhity 43 log(N))
algorithm), would optimally use the quoted numbers of equivalent sources (raggHh)y).

We note the high accuracy of the approximation for relatively small cells, as well as t
increased accuracy that results as the size of the obstacle is increased.

6.4. Numerical Results for Other Geometries

Of course, no aspect of our algorithm is restricted to consideration of simple shay
such as spheres or ellipsoids. To demonstrate this we consider two additional gec
tries, namely, the bean-shaped scatterer depicted in Fig. 4a and the ogive surface sho
Fig. 5. The bean-shaped surface is defined by the equation

x2 (¢1RcosZZ + y)2 z
+ R
a?(1—azcos™)  b?(1—aycosiZ)  c?

= R?

witha=0.8,b=0.8,c=1, a; = 0.3, ap = 0.4, andaz = 0.1. The largest dimensiocA
of this body (in thez direction) is equal to R.

In order to investigate the accuracy of the algorithm in this case we first calculat
solutions corresponding to the boundary conditions given by a point source inside the b
at a distance .8 from the origin in the directio® = 10°, ¢ = 0°. As explained in the
previous section, the exact solution for such boundary conditions is known in closed fol
The results of this experiment are given in Table VIII. We see that the performance of
algorithm is not altered and that none of the good qualities demonstrated above are a r
of the simplicity of the geometries used. Figure 4b presents the forward scattering from
bean-shaped object of sizZe= 301 under plane-wave incidence. The near field behind th

TABLE VIII
Scattering by the Bean-Shaped Obstacle: Point Source

SizeA Unknowns No. of iterations Time/iteration Eoo &
300 271190 18 1 h 50 min Bx10°3 30x10*
30n 617910 18 4 h 28 min B x 10 32x10°

Note.The error norms, ande,, are defined in Appendix B.
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TABLE IX
Scattering by an Ogive

Type Size  Unknowns Iterations  Time/iteration Eoo &
Nonaccelerated A 1568 20 69s B5x10° 14x10°
Nonaccelerated A 6336 17 12min45s 8x10°% 22x10°
Nonaccelerated A 25472 17 3h 27 min 8x107 48x107
Accelerated 10 34112 13 26 min Bx10* 21x10*
Accelerated 20 34112 14 14 min ®x10° 24x10°
Accelerated 20 72320 19 67 min Bx10° 21x10°

Note.The error norms, ande,, are defined in Appendix B.

object—on a plane parallel to the coordinate pl&wzand located on a distandefrom
the origin—is shown in Fig. 4b.

Table IX displays a set of preliminary results obtained for scattering from a singul
surface, the ogive depicted in Fig. 5, for acoustical sizes (distances between tips) equ
1%, 104, and 20Q.. Here we again used boundary conditions as given by a unit source loca
inside the ogive for which, as mentioned above, the exact solution is known. (A converge
study for plane-wave boundary conditions showed errors consistent with those displa
in Table IX.) For the larger sizes we used the accelerator described in Section 4; note
substantial improvements in computing times resulting from the acceleration algorithm

(In this paper we have not described our general approach to resolution of geome
singularities. In the particular case of the ogive’s conical singularities, the resolution
the singular integrands was achieved through a combination of two changes of variable
polar change of variables similar to that described in Section 3 followed by a polynom
change of variables which regularizes thadr-type singularity of the underlying density;
complete details are given in [6].)

A brief comment is in order with regard to adaptivity: When refined discretizations a
required to resolve singularities of the scattering surface—as they are indeed implici
our treatment of the ogive tips discussed above—the following acceleration scheme
be used. A global (coarser) Cartesian grid is utilized to compute long-range interacti
between distant portions of the scattering surface, together with as many local (fine) g
as necessary to appropriately cover the singularity regions. The fine grids are then |
to accelerate short-range interactions within each one of the singular regions, and th
multiscale FFT acceleration scheme results.

APPENDIX A: ACCELERATION OF THE LEAST-SQUARES SOLVERS

We show how the solution of the linear systems (22) and (30) can be reduced to solu
of eight linear systems of eight times smaller size. For definiteness we present full det
for the former system

AE =b; (45)

as mentioned below, the latter system can be handled similarly.
The vector in (45) contains the intensities of the equivalent soufces(&", 5,?); the
right-hand sideéb = (by, by, ... byt ), On the other hand, is a vector containing values o
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the field generated &' collocation points odS; by the true surface sources, afds
a (n°! x ns°ure® matrix each entry; ; of which is equal to the field of thgth equivalent
source at théth collocation point.

As shown in Fig. 3, the array of equivalent sources is designed in such a way that
even number of points in each row and each column of this array lies within each face
each one of the cells. This arrangement induces a useful set of symmetries in tHé'set
Indeed, we see that, in coordinates centered at the centgrifoh pointr = (X, y, 2) isin
the set then so are each one of the following eight points:

rn=(X,Y,2,

rz= (X, —Y,2,

rs=(—X, -y, 2,

ry=(—X,Y,2), (46)
rs = (X, Yy, —2),

re = (X, =Y, —2),

rz = (=X, -y, —2),

rg = (=X, Yy, —2).

A set Q of points which, likeIT{, contains all of the points (46) every time it contains
(X, Y, 2), will be referred to a as an invariant set. Clearly, an invariant set of cardimality
splits inton/8 invariant subsets of eight points, each of which is “minimal,” in the sense th
it contains no nontrivial invariant subsets. (We note that a minimal invariant set is genera
by any one of its elements by means of the symmetries (46).)

To take advantage of the symmetries underlylifgve also utilize an invariant s€; of
collocation points o S. Further, we reorder the vectaysb and the matriXA so that the
entries corresponding to each minimal invariant group of points are numbered consecuti\
(We place all monopoles first followed by all dipoles, so that the left half of the mAtrix
corresponds to the intensities of monopoles, while the right part is related to the intensi
of dipoles.) Under such numbering the mawixn (45) consists ofns°'¢¢/8) x (n°''/8)
blocksP; s of size 8x 8; note that the entries of the bloék s relating therth group of
sources to theth group of collocation points contains the values of the field generated |
the source group (with intensities equal to 1) &th collocation group.

At this stage, appropriate changes of basis can be used to reduce each one of the b
P s to diagonal form. We first treat the case in which thie group of sources is a group of
monopoles; in this case we introduce an orthonormal bai aonsisting of the following
vectorsv; e R%, j =1,...,8:

Vi = f(11111111)T

Vp = f(l -1,1,-1,1,-1,1,-17,

V3 = f(l 1,-1,-1,1,1, -1, -7,

Vg = f(l -1,-1,1,1,-1,-1, 17,

vs=-—-(1,1,1,1, -1, -1, -1, -1, (47)

Jé
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1
Vo= —(1,-1,1,-1,-1,1,-1, 17,

NG
1
vo=-—(11-1,-1-1,-1117,
7 Jé( )
Vg = 1(1 1,-1,1,-1,1,1, -1
8 - «/g ] ] ) ] ] ) ) .

It is easy to check that, indeed, in the basis (47), the linear opdratois diagonal;
that is, callingV the (orthogonal and symmetric) matri¥4, ..., Vg), we have that the
matrix

Ps=VTP sV =VP sV (48)

is diagonal. To show this we consider the field generated by a set of eight monopoles loc
at points making up a minimal invariant subggtof I1¢, and with strengths given by the
coordinates of the vectar; for somej. Let R, in turn, be one of the minimal invariant
subsets of the set of collocation points. We note that an interchange of two pgirssry,

in Q has the same effect on the field as a corresponding permutation of the coordinate
v;. In particular, each of the maps

Xk > —Xk, k= 1,2, 3, (49)

induces a permutation of the coordinates of each of the vegtersvhich has the same effect
as that caused by the corresponding permutation of monopole locations. By inspection
see that the former permutations map a vegjoeither intov; itself or into—v;. Calling

w; the vector of values of the field at the poirRRs taken with an ordering as induced by
Eq. (46), we see that, again, the induced permutations map a wgciato w; if vj — vj,
and they mapwv; into —w; if vj — —v;. From this fact it is easy to check that is
proportional tov; and, thus, that the matrix (48) is diagonal as claimed—thus concludir
our treatment of 8 8 blocks in the monopole case.

Dipoles can be treated in a similar manner: the only difference in this case relate:
the fact that, for an intensity vecter as in (47), the transformation (49) flr= ¢ maps
wj into —wj if vj > v;, and it mapsw; into w; if v; = —vj—that is, the sign changes
are opposite for monopoles and dipoles in ke ¢ case; in the casds# ¢ they are
identical. This situation results from the fact that all dipoles used in Eg. (20) are given
derivatives in the positivg, direction. Use of dipoles defined by means of normals exteric
to the cell faces gives rise to symmetries identical to those considered earlier, and, t
the diagonalization in new variables (which may differ from the actual dipole intensities
a sign) can be performed by means of the changes of basis given for the monopole
We have thus reduced to diagonal form each one of theB&locks which make up the
matrixA, and we have thus produced an equivalent sparse system. An additional permute
of the basis transforms the overall system (45) into a block-diagonal form, with blocks
size(ns°vree /8) x (n¢!/8), as claimed.

The block diagonalization described above thus reduces the problem of computing
QR factorization ofA to that of obtaining the QR factorization of eight matrices of size
(nsouree /8) x (n°M/8). This leads to a 64-fold reduction in the cost of computation o
the QR factorization, and an 8-fold reduction in the cost of solution of each least-sque
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problem. (Note that the latter operation is required for each nonempty cell and for ev
iteration of the linear-system solver.)

The symmetriesin the linear system (30) can be exploited in an entirely analogous matr
to produce similar cost reductions in the solution of the in-cell Dirichlet problem describ
in Section 4.3.

APPENDIX B: ERROR ESTIMATION

The errors mentioned in Sections 6.1 and 6.2 for the codes FISC and FastScat \
originally presented in Ref. [10, 28] &<’ errors in the bistatic radar cross section (RCS)
477|Us (R)|?> measured in decibels; i.e.,

1 1/2
fdB = {4—/ (10logyo [US(R) ? _ 10logy, ]uiﬁa"‘(i)f)zd)?} ,

T Js2
whereu@®(%) andus°(X) represent the exact and calculated far-field values in the directic
. In Sections 6.1 and 6.2 we preferred to utilize the closely relatatbrm of the relative
pointwise error inu.(X)|? given in percent,

1 leron |2 o |2 o212 o |
e = 2000 1 [ [(Justoo ? — [0 ) s
T Js2

which gives a direct indication of the number of digits of accuracy in the RCS. It is easy
see that, for errors of the order of, say, 10% or lowgrandeqg are related by a constant
factor:

o ~ 10 In 1QgB. (50)

The values of the erram, produced by FastScat and FISC as presented in Sections 6.1
6.2 were computed from the valuessgg given in Ref. [10, 28] by means of Eq. (50).

In Sections 6.3 and 6.4 we study the far-field valuggX) and, to gain a precise insight
into the accuracies obtained for this quantity, we use two different error measures, narn
the relativeL.? norm

1/2 1/2
£2 = { / {ugg'c(ﬁ)—ugg‘“‘(i)fdi} / { / |u§g‘acF(>?)|2df<} (51)
§? 52

and the maximum norm

£oe = MaX|UZ (%) — UZHAR)|. (52)
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