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Hexagonal quantum graph

The spectrum is continuous and we have Floquet—Bloch theory:

k= (ki, ko) € R?/2rZ7, N=~77, ~1by+ 72b2 <+ (71,72)-

Speceant(H) = | U {A“;lnﬁn] (i%|1 Lok e'k2‘>} .

n>1 +
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Fefferman—Weinstein '12, '14: 2D Schrodinger equation models
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What is actually observed? Answer: density of states, p(E):

tr ]'B(R) f(H) .

trf(H) := ’Jlnoo\ml(lgm))_/Rf(E)dp(E).
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B:=BdqAdo=dA, A=1B(—xdx+xide).

(HP9)e = (DPDBY)e + Vipe,  (DPp)e := —ithy, — Actle
vedeiNde = 1he(v)=1e(v), Z (DBw)e(V) =0.

Oedv
It is now important that the graph is directed.
The Peierls substitution P : te — e”eti),:
AZ = PTIHEP, (AP¢)e = —¢ + Ve
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Magnetic field

B:=BdqAdo=dA, A=1B(—xdx+xide).

(H)e := (DPDPY)e + Ve,  (DPW)e := —ith — Actie
veEdeaNde = a(v)=ve(v), Y (DP¥)(v)=0.
Oedv
It is now important that the graph is directed.

The Peierls substitution P : te — e”eti),:
AB .= P7IHBP (ABy). = —4 + Vi)e

drer = 0rey = v = e+ Ay, (v) = e+ A2y, (v),
> M) =0,
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Reduction to an operator on £?(Z?) via Krein's formula of
Briining—Geyler—Pankrashkin '07:

(A" =271 = (AP =) =y (M) ()

B ~A(\) 1+ 7%+ 71
M(X) = % <(1 + 70 —1—7’1)* —A(N) >

(N =rn—Ly) () =" r(n,72-1), veZ?

which has the same spectrum as

1 —A(N) 14 e + efbx
3\ (14 e~ + e”’DX)* —A(N)
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~ rl f
tr F(HB) = A@@M:Af(E)de(E)

The limit does exist in this case as well but that is less obvious
since we do not have periodicity anymore.
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Magnetic density of states

. trlgr f
fF(H) = fim * ((B) / F(E)dps(E

The limit does exist in this case as well but that is less obvious
since we do not have periodicity anymore.

Qualitative pictures of pg(E) from the physics literature:

4 - . r r g "—’

w(meV)
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Theorem. For | a neighbourhood of a Dirac energy, Ep,
A(Ep) =0, and h the magnetic flux through a honeycomb
fecol), a>o,

[ F(EVos(E) = - S AED) + Oy ()
nez

A(En(h)) = k(nh, h)
F(x(C, h)27 h)=¢, F(w,h)~ Z h]FJ(w)v Fj e C*(R),
j=0
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Landau Levels

A(En(h)) = K(nh, h), Fo(r(C, h)?, h) = ¢+ O(h),
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DOS is simple as h — 0:

/ f(E)dps(E) = 7T|bth2| > F(Ea(h)) + Ojgca (h)
neZ

Spec(H®) is complicated (even as h — 0):

B.—Han-Jitomirskaya '18
Hofstadter '76 ... Avila—Jitomirskaya '09 ...
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Magnetic (de Haas—van Alphen?) oscillations

Grand canonical potential: pf(E) := pg(E)E?,
Qp(p, B) = pig * fa(11)

1
fa(x) == 3 log (exp (6x) +1) = —x4, [ — o0
Magnetization:

0Qs(u, B
s 5) <L)

Semiclassical approximation:

(1, B) =~ 5" o= En(A)+O(H), h = Blbs A b,
>1

:W’bl/\b2|n

Differentiation can be justified for 3 < h~M (Helffer-Sjostrand '90)
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Comparison with numerics for the exact formula for rational h:
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Thank you very much!
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