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I. Prelude: Towards Many-Body Localization

Localization ≈ Absence of Quantum Transport

One Body Transport:

https://www.youtube.com/watch?v=6BLtqLL1fTA

Many Body Transport:

https://www.youtube.com/watch?v=7qPvmYbfM6I

https://www.youtube.com/watch?v=6BLtqLL1fTA
https://www.youtube.com/watch?v=7qPvmYbfM6I


One-Body Transport:

http://clipart-library.com/clipart/clipart/2086235.htm http://clipart-library.com/clipart/2086235.htm
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Many-Body Transport:



Want to get a paper into a really good journal?

Take the Heisenberg model (for example):

H =
∑
j∈Z

(σXj σ
X
j+1 + σYj σ

Y
j+1 + σZj σ

Z
j+1)

Add a random field, e.g.

H(ω) = H +
∑
j∈Z

ωjσ
Z
j

(i) Show that H(ω) is “many-body localized” in an
“extensive energy regime”.

(ii) Probably easier: Show that H(λω) is “fully many-body
localized” at large disorder λ.



Some words of caution:

I In dimension d > 1 not even the one-particle case is
settled: There is no rigorous proof of extended states for
Anderson model in d = 3.

I There is no rigorous proof of non-existence of a mobility edge
for Anderson model in d = 2.

I Hope: Starting with spin chains (d = 1) will help. Also, spins
are much simpler than electrons.

I However:

I Dynamical systems methods (as for 1D ergodic Schrödinger
operators) will not be equally useful for 1D many body models.

I In fact: For disordered Heisenberg model a many-body
localization/delocalization transition is expected in 1D (for
small disorder).



So what can we do?

I Will present some first results towards MBL in relatively
simple models and regimes (“scratching the surface”).

I Focus on getting a sense of phenomena and relevant concepts.

I Have nothing to say about “thermalization” at high energy
and the many-body Anderson transition.

I Have nothing to say about multidimensional disordered
quantum spin systems.

I Conclusion will be: Field of localization/delocalization for
many-body models is still wide open!1

1But be ready to be ridiculed by physicists...



A first (rough) glance at possible manifestations of MBL:

I Dynamical MBL: No many-body/information transport (e.g.
Newton’s cradle), quantum version can be formulated as zero
velocity Lieb-Robinson bound.
Spin systems are ideal models to study this (no one-particle
transport).

I Localization of eigenstates (thermal states, etc.): All
eigenstates of a many-body localized system should be “close”
to the eigenstates of a non-interacting many-body system, i.e.
product states.
Can be detected through:

I Rapid decay of correlations
I Low entanglement (area laws)
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II. MBL Properties of the Disordered XY Chain

(In particular: Introduction of Relevant Concepts)

Survey of some of the results of:

I Hamza/Sims/St. 2012

I Klein/Perez 1992

I Sims/Warzel 2016

I Pastur-Slavin 2014

I Abdul-Rahman/St. 2015

I Abdul-Rahman/Nachtergaele/Sims/St. 2016, Survey 2017



XY (or XX) Chain in Random Field:

HXY (ω) = −
L−1∑
j=1

(σXj σ
X
j+1 + σYj σ

Y
j+1)−

L∑
j=1

ωjσ
Z
j in

⊗L
j=1 C2

Assume: (ωj)
∞
j=1 i.i.d. random variables, with distribution

dµ(ωj) = ρ(ωj) dωj , where ρ is bounded and compactly supported.

Jordan-Wigner transform:

c1 := a1, cj := σZ1 . . . σ
Z
j−1aj , j = 2, . . . , n, a :=

(
0 1
0 0

)
Canonical anti-commutation relations (CAR):

{cj , c∗k} = δjk I , {cj , ck} = {c∗j , c∗k} = 0



Then
HXY = 2c∗Mc + E0

with E0 = −
∑

j ωj , c = (c1, . . . , cL)t , c∗ = (c∗1 , . . . , c
∗
L) and

effective Hamiltonian

M =


ω1 −1

−1
. . .

. . .
. . .

. . . −1
−1 ωL

 1D Anderson Model!

Remarks: (i) In language of second quantization:

HXY
∼= 2dΓa(M) + E0 on Fa(`2([1, L]))

(ii) Jordan-Wigner transform is non-local.
(iii) Spin chain has commuting degrees of freedom, while {cj} are
anti-commuting degrees of freedom.



Nevertheless we will see:

Anderson localization for M =⇒ MBL for HXY

Known strong form of Anderson Localization:

Localization if Eigenvector Correlators:

E

(
sup
|g |≤1

|(g(M))jk |

)
= E

(∑
`

|ϕ`(j)||ϕ`(k)|

)
≤ Ce−µ|j−k|

uniformly in L (ϕ` eigenvectors of M).

In particular: Dynamical (One-Body) Localization:

E
(

sup
t∈R
|(e−itM)jk |

)
≤ Ce−µ|j−k|

This implies various MBL properties for the disordered XY chain:



Zero-velocity Lieb-Robinson bound (Dynamical MBL)

Local observables: For A,B ∈ C2×2 let
Aj = I ⊗ . . .⊗ A⊗ . . .⊗ I (in j-th position), Bk = . . .
Heisenberg dynamics: τt(Aj) = e itHAje

−itH

Theorem 1 (Hamza/Sims/St. 2012)
There exist C <∞ and µ > 0 such that

E
(

sup
t∈R
‖[τt(Aj),Bk ]‖

)
≤ C‖A‖‖B‖e−µ|j−k|

for all L, 1 ≤ j , k ≤ L, A,B ∈ C2×2.

Note: Requires averaging over disorder E(·).



Compare: Lieb-Robinson 1972 (recent explosion of
improvements, extensions and applications: Nachtergaele/Sims
2006, Hastings/Koma 2006, Hastings 2007,...):

For a quite general class of quantum spin systems (e.g. with
bounded coefficients and bounded interaction range) it holds that

‖[τt(Aj),Bk ]‖ ≤ C‖A‖‖B‖e−µ(|j−k|−v |t|)

v <∞ Lieb-Robinson (group) velocity

Deterministic result!

Note: There are results on anomalous LR-bounds (quasi-periodic
field: Damanik/Lemm/Lukic/Yessen 2014)



Key to proof of Theorem 1: Use basic properties of quasi-free
and free Fermion systems to show

τt(cj) =
∑
`

(
e−2iMt

)
j`
c`

Thus: One-particle dynamics e−2iMt determines many-body
dynamics τt(cj).

Now “undo” Jordan-Wigner by two geometric summations to get
dynamics of local operators such as aj , a

∗
j .

Build other local observables from this.



Exponential Decay of Correlations (“Exponential Clustering”):

Theorem 2 (Sims/Warzel 2016)
There exist C <∞ and µ > 0 such that

E

(
sup
ψ,t
|〈ψ, τt(Aj)Bkψ〉 − 〈ψ,Ajψ〉〈ψ,Bkψ〉|

)
≤ C‖A‖‖B‖e−µ|j−k|

for all L, 1 ≤ j , k ≤ k, and all A,B ∈ C2×2.
Here the supremum is taken over all normalized eigenfunctions ψ
of H and all t ∈ R.

Notes: (i) Same for thermal states ρβ = e−βH/Tre−βH , with
expectations defined as 〈A〉ρβ = TrρβA.
(ii) Earlier related work (ground state): Klein/Perez 1992



Area Law for the Entanglement Entropy:

Bipartite decomposition:

HL = HA ⊗HB , HA =
⊗̀
j=1

C2
j , HB =

L⊗
j=`+1

C2
j

ψ normalized eigenstate of H, ρψ = |ψ〉〈ψ|, reduced state:

ρAψ = TrB ρψ

Bipartite entanglement entropy:

E(ρψ) := S(ρAψ) := −Tr ρAψ log ρAψ

(
= S(ρBψ)

)
For generic pure states: E(ρ) ∼ ` (volume law)



Uniform Area Law:

Theorem 3: (Abdul-Rahman/St. 2015)
There exists C <∞ such that

E

(
sup
ψ
E(ρψ)

)
≤ C

for all L and all 1 ≤ ` < L. Here the supremum is taken over all
normalized eigenstates ψ of H.

Notes: (i) Method due to Pastur/Slavin 2014, who proved the
area law for the ground state of a disordered d-dimensional
quasi-free Fermion system (bound C`d−1).
(ii) No logarithmic correction in `.
(iii) Open problem: Analogue for thermal states w.r.t. log.
negativity (Vidal/Werner 2002). Note that E(·) is NOT a good
entanglement measure for mixed states.



Entanglement Dynamics under a Quantum Quench:
Let

I HA, HB restrictions of H to A and B

I ψA, ψB normalized eigenstates of HA, HB , ρA = |ψA〉〈ψA|,
ρB = |ψB〉〈ψB |

I ρ = ρA ⊗ ρB (i.e. E(ρ) = 0)

I ρt = e−itHρe itH (full) Schrödinger dynamics

Theorem 4: (Abdul-Rahman/Nachtergaele/Sims/St. 2016,
special case)
There exists C <∞ such that

E

(
sup

t,ψA,ψB

E(ρt)

)
≤ C

for all ` and L.



Remarks on MBL Hierarchy:

There are general results of the “type”:

Zero-velocity LR bound

=⇒ Exponential clustering
(Hamza/Sims/St. 2012, Friesdorf et al 2015)

=⇒ Area Law (Brandao/Horodecky 2013/2015)

I For disordered XY chains the above “direct” results are
stronger.

I Most likely no satisfying converses, I think. But more math
left to be understood here.



Main tool in proofs of Theorems 2 to 4:

Quasifree States and Correlation Matrices

Fact: Eigenstates ρ = ρα, α ∈ {0, 1}L, and thermal states ρ = ρβ,
0 < β <∞, of a quasifree Fermion system c∗Mc are quasifree (i.e.
expectations of arbitrary products of the cj and c∗j can be
calculated by Wick’s Rule.

Also: The reduced state ρA of a quasifree state ρ is again
quasifree.

Thus ρ is uniquely determined by its correlation matrix

Γρ = (〈cjc∗k 〉ρ)Lj ,k=1

and ρA by the restricted correlation matrix

ΓA
ρ = (〈cjc∗k 〉ρ)`j ,k=1



For Theorem 2 (Sims/Warzel): Calculate Pfaffians (in clever
ways).

For Theorems 3 and 4 use (Vidal, Latorre, Rico, Kitaev 2003):

S(ρA) = −Tr ρA log ρA = −tr h(ΓρA)

where h(x) = x log x + (1− x) log(1− x). (Reduces dimension
from 2` to `.)

If σ(M) = {λj : j = 1, . . . , L} is simple, then Γρα = χ∆α(M),
where

∆α := {λj : αj = 1}

Rest of proof uses that, by Anderson localization of M,

E
(

sup
α
|(χ∆α(M))jk |

)
≤ Ce−µ|j−k|



Most of the above can be extended to the anisotropic XY chain in
random field (at least for large disorder λ):

Hγ = −
L−1∑
j=1

((1 + γ)σXj σ
X
j+1 + (1− γ)σYj σ

Y
j+1)− λ

L∑
j=1

ωjσ
Z
j

= C∗M̃C + E0I

Here C = (c1, . . . , cL, c
∗
1 , . . . , c

∗
L)t , C∗ = (c∗1 , . . . , c

∗
L , c1, . . . , cL),

Block Anderson model: M̃ =

(
M K
−K −M

)

M =


ω1 −1

−1
. . .

. . .
. . .

. . . −1
−1 ωL

 , K =


0 −γ

γ
. . .

. . .
. . .

. . . −γ
γ 0





III. Interlude: The Ising Model

Have seen: Heisenberg XYZ (XXX) model gets MUCH simpler if
we drop the Z term!

What happens for the other extreme, i.e., if we drop the XY terms?

Model gets TRIVIAL! Not even quantum :(

Ising model with disorder:

HIsing (ω) =
1

4

∑
j∈Z

(I − σZj σZj+1) +
∑
j∈Z

ωjNj

Here: Nj =

(
0 0
0 1

)
j

“local number operator”

Have normalized so that Ω = | . . . ↑↑↑ . . .〉 is ground state
(“vaccum”) with HΩ = 0. Assume here that ωj ≥ 0 for all j .



HIsing (ω) is diagonal in the product basis

{ϕX :=
∏
j∈X

a∗j Ω : X ⊂ Z finite}

“Creation operators”: a∗j =

(
0 0
1 0

)
j

(of down spins/particles)

Note:

(I − σZj σZj+1)ϕX =

{
2ϕX if {j , j + 1} ∈ ∂X (surface of X )
0 else

Thus: HIsing (ω)ϕX =
(

1
2 |∂X |+

∑
j∈X ωj

)
ϕX

In particular: σ(HIsing (0)) = {0, 1, 2, . . .}, eigenspace to Ek = k:

span{ϕX : X consists of k sep. clusters of down spins}

k = 1: X interval, i..e., ϕX forms a single down spin “droplet”



Philosophical Question:

Is HIsing (0) many-body localized?

Pro:

I H has an eigenbasis of product states.

I Dynamics is trivial, in particular [τt(A),B] = 0 for all t if
suppA∩ suppB = ∅.

Con:

I Eigenspaces are highly degenerate. There are eigenstates with
long range correlations and high entanglement.

I A truly localized regime should be “rather stable” under
(small but extensive) perturbations, which is arguably not the
case here (as we will see in the example below).

Corresponding 1-particle question: Is the identity operator
Iϕ = ϕ Anderson localized in `2(Z)? Seems rather silly...



Adding a random field overcomes these questionable issues:

I In finite volume [−L, L] and assuming that ωj are i.i.d. with
absolutely continuous distributions:

H
[−L,L]
Ising (ω) has almost surely non-degenerate spectrum, so

that all eigenstates are product states.
In infinite volume spectrum becomes dense pure point.

I One way to think of main result of next chapter:
MBL for HIsing (ω) is stable under a “natural” extensive
perturbation, at least at low energies.



IV. Localization of the Droplet Spectrum in the
XXZ Chain

Idea: Perturb around the Ising model by bringing small XX-terms
back!

Droplets in the Ising phase of XXZ:

I Starr 2001, Nachtergaele/Starr 2001,
Nachtergaele/Spitzer/Starr 2007

I Fischbacher 2013, Fischbacher/St. 2014, 2017

Localization of the Droplet Spectrum:

I Beaud/Warzel 2017a, 2017b

I Elgart/Klein/St. 2017a, 2017b



The disordered infinite XXZ chain

HXXZ (ω) =
∑
j∈Z

hj ,j+1 + λ
∑
j∈Z

ωjNj

on H = {ϕX : X ⊂ Z finite} (Hilbert space completion).

hj ,j+1 =
1

4
(I − σZj σZj+1)− 1

4∆
(σXj σ

X
j+1 + σYj σ

Y
j+1)

=
1

4∆
(I − ~σj · ~σj+1) +

1

4
(I − 1

∆
)(I − σZj σZj+1)

Assume: (i) ∆ > 1 “Ising phase” (model frustration free)

(ii) ωj i.i.d., a.c. distribution, bounded density, support [0, ωmax ]

(iii) λ > 0 disorder parameter



Particle number conservation

The subspaces

HN = span{ϕX : |X | = N}, N = 0, 1, 2, . . .

are invariant under HXXZ (ω). Thus

HXXZ (ω) =
∞⊕

N=0

HN(ω)

Identify HN = `2(VN), where

VN = {x = (x1, . . . , xN) ∈ ZN : x1 < x2 < . . . < xN},

i.e., x are ordered labelings of the down spin configurations
X = {x1, . . . , xN} ⊂ Z, ϕX = δx .



The N-particle operators:

I H0(ω) = 0 on span Ω

I N ≥ 1:

HN(ω) = − 1

2∆
AN +

1

2
DN + λVω on `2(VN)

Here:

I AN adjacency operator on VN (with `1-distance inherited from
ZN)

I DN multiplication operator (“potential”) on `2(VN) by

DN(x) = 2 |{connected components of X}| = |∂X |

(DN is actually the degree function on the graph VN , see also
talk by C. Fischbacher)

I Vω(x) = ωx1 + . . .+ ωxN N-particle Anderson potential



Happy Schrödinger :-)



Free XXZ (ω = 0): HXXZ (0) =
⊕

N≥0 HN(0)

System of attractive hard core bosons (down spins) at sites
x = {x1 < x2 < . . . < xN}:

HN(0) = − 1

2∆
AN︸ ︷︷ ︸

hopping (XX)

+
1

2
DN︸ ︷︷ ︸

interaction (Ising)

on `2(VN), N ≥ 1

Attractive interaction: DN(x) = N −
∑

1≤k<`≤N Q(|xk − x`|),
where Q(1) = 1, Q(r) = 0 for r 6= 1.

HXXZ (0) (meaning each HN(0)) can be exactly diagonalized by the
Bethe Ansatz2 (Babbitt/Thomas/Gutkin 70’s to 90’s, Borodin et
al 2015):

2But our proofs do actually NOT use this!





Nachtergaele/Starr 2001, Figure 2 (∆ = 2.125):
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Droplet bands: (with cosh(ρ) = ∆)

δN =

[
tanh(ρ) · cosh(Nρ)− 1

sinh(Nρ)
, tanh(ρ) · cosh(Nρ) + 1

sinh(Nρ)

]
→ δ∞ =

{√
1− 1/∆2

}
as N →∞ (exp. fast)

Droplet spectrum:

I =

[
1− 1

∆
, 2
(

1− 1

∆

))
=: [E0,E1)

How do eigenstates to E ∈ I look like?

They are “exponentially close” to droplets: See exact expressions
in Nachtergaele/Starr 2001



The finite volume disordered XXZ chain:

On H[−L,L] =
⊕L

j=−LC2:

HL
XXZ (ω) =

L−1∑
j=−L

hj ,j+1 + λ

L∑
j=−L

ωjNj + β(N−L +NL)

Here: ωj ≥ 0 for all j , β ≥ 1
2 (1− 1

∆ ) (“droplet b.c.”)

Particle number conservation:

HL
XXZ (ω) =

2L−1⊕
N=1

HL
N(ω) on

2L−1⊕
N=1

`2(VLN),

VLN := {x = (x1, . . . , xN) ∈ ZN : −L ≤ x1 < . . . < xN ≤ L}



Droplet configurations in VL
N :

VLN,1 :=
{
x = (x1, x1 + 1, x1 + N − 1) ∈ VLN

}
Theorem 4: (Elgart/Klein/St. 2017a, Fischbacher/St. 2017)

Let E < E1, HL
N(ω)ψE = EψE , ‖ψE‖ = 1, and let A ⊂ VLN . Then

‖χAψE‖ ≤
4

E1 − E
e−

E1−E
2

(log ∆)dN(A,VL
N,1)‖χVL

N,1
ψE‖.

Here dN denotes the `1-distance of two subsets of ZN .



I This is a consequence of a Combes-Thomas bound on Green’s
function shown in Elgart/Klein/St. 2017a.

I Constants are uniform in N.
This becomes possible in the Combes-Thomas bound (where
the decay rate usually depends on the dimension as 1/N)
because the two terms in − 1

2∆AN + 1
2DN “balance” one

another, uniformly in N.

I This bound is deterministic. In particular, it holds for ω = 0.



Entanglement bounds: (from now on H := HL
XXZ (ω))

Bipartite decomposition: [−L, L] = Λ` ∪ Λr , E(ρψ) := S(ρΛ`
ψ )

Theorem 5: (essentially Beaud/Warzel 2017b)
Let ∆ > 1 and δ > 0. Then there exist constants C1 = C1(∆, δ)
and C2 = C2(∆, δ) such that

(a) for every ω ≥ 0, every E ≤ E1 − δ and every normalized
eigenvector ψE ∈ HN of H to E ,

E(ρψE
) ≤ C1 log min{|Λ`|,N} ≤ C1 log |Λ`|

(b) If E(·) denotes disorder averaging, then

E
(

sup
E ≤ E1 − δ
‖ψE‖ = 1

E(ρψE
)
)
≤ C2



Remarks:

I Part (a) holds, in particular, for ω = 0 (droplet states of free
Ising phase XXZ)! C1 is quite explicit.

I Averaging over disorder kills the log-correction!

I Part (a) follows from Theorem 4 and summing up many
geometric series.

I Part (b) follows quite easily from Part (a), because large
down-spin clusters rarely have energy below E1 (by large
deviations for

∑N
j=1 ωj).

Need to work harder for LR bounds and correlation bounds!
(Remember MBL hiearchy.)

Key result for everything else to come:



Droplet Localization:

Theorem 6: (Elgart/Klein/St. 2017a)

Let δ > 0, λ > 0 and ∆ > 1 be such that λ
√

∆− 1 is sufficiently
large (dep. on δ). Then there exist C <∞ and m > 0 such that

E

 ∑
E∈σ(H)∩I1,δ

‖NjψE‖‖NkψE‖

 ≤ Ce−m|j−k| (1)

uniformly in L > 0, j , k ∈ [−L, L].

Here ψE is the (almost surely unique) normalized eigenstate to
E ∈ σ(H) and

I1,δ := [E0,E1 − δ]



Remarks (including on the proof):

I Interpretation: Eigenstates in the droplet spectrum are close
to states with only one down-spin cluster!

I Special cases: (i) ∆ > 1 fixed, λ large, (ii) λ > 0 fixed, ∆
large.

I Droplet localization (??) is a form of many-body
eigencorrelator localization in the droplet spectrum. In
particular:

E

 sup
|g |≤χI1,δ

‖Njg(H)Nk‖1

 ≤ E

 ∑
E∈σ(H)∩I1,δ

‖NjψE‖‖NkψE‖


Note here that for a simple eigenvalue:

‖Nj |ψE 〉〈ψE |Nk‖1 = ‖NiψE‖‖NjψE‖



I In particular, this is applicable to the (energy restricted)
dynamics of H via g(H) = χI1,δ(H)e−itH .

I Particle number conservation reduces the proof to summing
over eigencorrelators in the N-particle subspaces.

I In each N-particle space, the bound is proven by the fractional
moments method. Uniformity of constants in N follows from
uniformity of constants in the Combes-Thomas bound.

I Summability over N follows by a large deviations argument
(“IDS” decays exponentially in N).



Consequences of Droplet Localization:

We keep all assumptions on H = HL
XXZ (ω) from above, including

the (∆, λ)-regime from Theorem 6.

Consequences of droplet localization are energy-restricted
versions of several of our favorite MBL manifestations.

More precisely:

I I := I1,δ for any fixed δ > 0 (which constants below will
depend on).

I PI = χI (H) = spectral projection for H onto I



I Heisenberg evolution: τt(X ) = e itHXe−itH

I Projection of local observable onto energy window:
XI := PIXPI

I Energy restricted Heisenberg dynamics:

τt(XI ) = e itHPIXPI e
−itH = PI τt(X )PI = (τt(X ))I

I Compare with energy-restricted Schrödinger dynamics (as
routinely used for one-particle models):

e−itHPIψ, ψ ∈ H



Zero-velocity Lieb-Robinson bound:

Theorem 7: (Elgart/Klein/St. 2017b)

There exist C <∞ and m > 0, independent of L, such that, for all
local observables X and Y ,

E
(

sup
t∈R
‖[τt(XI ),YI ]‖

)
≤ C‖X‖‖Y ‖e−m dist(SX ,SY ).

Recall I = I1,δ. XI = χI (H)X χI (H).

SX and SY are supports of X and Y (assumed to be intervals).



Quasi-locality of the dynamics (“LR for gourmets”):

Theorem 8: (Elgart/Klein/St. 2017b)

There exist C <∞ and m > 0 such that for all X , t and ` there
exists a (random) local observable X`(t) = X`(t, ω) with

SX`(t) = SX ,` = SX + [−`, `]

and

E
(

sup
t∈R
‖(X`(t)− τt(X ))I‖

)
≤ C‖X‖e−m`.

Note: In the energy restricted case zero-velocity LR and
quasi-locality are NOT equivalent!



Exponential clustering:

Theorem 9: (Elgart/Klein/St. 2017a)

There exist C <∞ and m > 0 such that for all local observables
X and Y ,

E

sup
t∈R

∑
E∈σ(H)∩I

Rτt(XI ),YI
(ψE )

 ≤ C‖X‖‖Y ‖e−m dist(SX ,SY ).

Here
RX ,Y (ψ) = |〈ψ,XYψ〉 − 〈ψ,Xψ〉〈ψ,Yψ〉|

Note: According to our proposed “hierarchy of MBL properties”
this should be the easiest result to prove.



V. Two illustrative (sketches of) proofs

I The Combes-Thomas bound

I Exponential clustering



A Combes-Thomas bound (in infinite volume)

Fix N ∈ N (arbitrary) and drop all N’s from notation.

H = HN = − 1

2∆
A +

1

2
D + V on `2(VN)

= − 1

2∆
L+

1

2
(1− 1

∆
)D + V ,

with any potential V ≥ 0, L = A− D graph Laplacian on VN .
Recall:
D(x) = 2 |{connected components of x}| = degree of x in VN

P1 := orthogonal projection onto `2(VN,1)

Thus: H + (1− 1
∆ )P1 ≥ 2(1− 1

∆ ).



Theorem 10: (Elgart/Klein/St. 2017a, Fischbacher/St. 2017)

Let δ > 0, E ≤ (2− δ)(1− 1
∆ ) and A,B ⊂ VN . Then

‖χA
(
H + (1− 1

∆
)P1 − E

)−1

χB‖

≤ 4∆

δ(∆− 1)

(
1 +

δ(∆− 1)

8

)−dN(A,B)

Remarks: (1) No N-dependence in the constants!!!

(2) Can be extended to complex energy, works in finite volume, etc.



Sketch of proof:

As in the standard proof we use dilations:

Kη := e−ηρAHeηρA − H

where η > 0, ρA(x) := dN(A, x).

(Kηψ)(x) =
1

2∆

∑
y∈VN :y∼x

(1− e−η(ρA(y)−ρA(x))ψ(y)

x ∼ y ⇒ |1− e−η(ρA(y)−ρA(x)| ≤ eη − 1

Standard C-T: ‖Kη‖ ≤ eη−1
2∆ · 2N (use 2N = max. degree of VN)

Grows with N. Not good enough!



Instead: Borrow two factors D−1/2 and show

‖D−1/2KηD
−1/2‖ ≤ C (∆)(eη − 1).

N-independence is a consequence of the “balance” of A and D.

The two borrowed factors can be paid back via (due to L ≥ 0)

‖D1/2(H +
1

2
(1− 1

∆
)P1 − E )−1D1/2‖ ≤ C (δ,∆)

Now continue as in the standard C-T proof (essentially a resolvent
identity, e.g. Kirsch 2007)



Exponential Clustering

Proof of Theorem 9 for t = 0 and one-site observables X ∈ Aj ,
Y ∈ Ak , j 6= k : Can be built from

X+,+ =

(
1 0
0 0

)
j

,X+,− =

(
0 1
0 0

)
j

,X−,+ =

(
0 0
1 0

)
j

,X−,− =

(
0 0
0 1

)
j

Y±,± = same at site k

16 cases: RX a,b,Y c,d (ψE ), a, b, c , d ∈ {±}

Case 1: X−,− = Nj , Y
−,− = Nk

RNj ,Nk
(ψE ) = |〈ψE ,NjPI (I − |ψE 〉〈ψE |)PINkψE 〉|

≤ ‖NjψE‖‖NkψE‖

Thus Case 1 follows from Theorem 6.



Many other cases can be settled by particle number conservation:

Assume ψ = ψE ∈ HN for some N

(holds a. s. for all eigenvectors by simplicity).

Z ∈ {X ,Y } =⇒

Z+,−ψ has at most N − 1 particles (∈
⊕N−1

j=1 Hj)

Z−,+ψ has at least N + 1 particles (∈
⊕2L+1

j=N+1Hj)

Z−,− and PI preserve the particle number

This settles five more cases:

0 = RX+,−,Y +,−(ψ) = RX−,+,Y−,+(ψ) = RX+,−,Y−,−(ψ)

= RX−,−,Y−,+(ψ) = RX−,−,Y +,−(ψ)



For example:

〈ψ,X+,−PIY
+,−ψ〉︸ ︷︷ ︸

=〈X−,+ψ,PIY +,−ψ〉=0

−〈ψ,X+,−ψ〉︸ ︷︷ ︸
=0

· 〈ψ,Y +,−ψ〉︸ ︷︷ ︸
=0

Another eight cases can be reduced to the previous six cases by
using the properties
(a) RX+,+,Z = RX−,−,Z (X+,+ = I − X−,−)
(b) RZ ,Y +,+ = RZ ,Y−,−

(c) RZ ,W = RW ∗,Z∗

This leaves two cases:

(i) RX−,+,Y +,−(ψ), (ii) RY−,+,X+,−(ψ)

Case (ii) reduces to Case (i) by commutation.



The remaining Case (i):

∑
E

RX−,+,Y +,−(ψE ) =
∑
E

|〈ψE ,X
−,+PI (I − PE )Y +,−ψE 〉|

=
∑
E

|〈ψE ,NjX
−,+PI (I − PE )Y +,−NkψE 〉|

≤
∑
E

‖NjψE‖‖NkψE‖

The claim follows from Theorem 6.

QED



VI. Epilogue: Where to go from here? (Gentle
Ben’s!)

Goals worthwhile trying:

I Scratch deeper in the Ising phase of XXZ: States with k
connected clusters of down-spins?

Note: Theorem 6 (droplet localization) does NOT hold above
[1− 1/∆, 2(1− 1/∆)] (by a Theorem in Elgart/Klein/St.
2017b). But states with k downspin clusters have energy at
least k(1− 1/∆).

Will have to think much more in terms of scattering theory
(of k quasi-particles)!



Also worthwhile:

Find some other concrete models where MBL regimes can be
identified! (Before attempting results for “classes” of quantum
spin systems.)

I Models without particle number conservation?
Tempting thought: Can the methods for anisotropic XY and
XXZ be combined to get a result for fully anisotropic XYZ (In
Ising phase)? Unhappy Schrödinger!

I Models with spin > 1/2? (Higher spin XXZ, AKLT)

I Models and more models: beyond nearest neighbors, beyond
quantum spin systems (harmonic oscillators, Abdul-Rahman
2017), ......



A reasonable attempt at a first result for a “class” of spin
systems:

I Show that large disorder leads to a “fully MBL” regime for a
general class of spin chains with short range interaction (i.e.,
complete the program of Imbrie 2016, who uses an unproven
assumption on level spacing).

Even here it may initially help to focus on a concrete example such
as the XXX Heisenberg chain.

(Imbrie:
∑

i Jiσ
Z
i σ

Z
i+1 +

∑
i hiσ

Z
i +

∑
i γiσ

X
i )



Homework (unreasonable goals):

I We have shown “zero-temperature localization” for disordered
XXZ in the Ising phase.
MBL in an “extensive energy regime” would mean localization
for energies in [−ρL, ρL] for some positive particle density
ρ > 0 (L the system size). May currently be out of reach.

I Thermalization? Many-body mobility edge? Well, maybe
better start with proving existence of extended states in 3D
Anderson model...

I Higher-dimensional spin systems? Even XY not understood.
Will require much more groundwork for the non-random case.

I Electron gases? (Basko/Aleiner/Altshuler 2006)



Cut the wires!
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