Diffusion for a Markov, Divergence-form Generator

Clark Musselman

Department of Mathematics Michigan State University

Arizona School of Analysis and Mathematical Physics March 16, 2012

Abstract

We consider the long-time evolution of solutions to a Schrödinger-type wave equation on a lattice with a Markov random generator. We show that solutions to this problem possess a diffusive scaling limit and compute higher moments.

Based on joint work with Jeffrey Schenker.

Statement of the Theorem

Theorem

If $\psi_t \in \ell^2(\mathbb{Z}^d)$ satisfies

$$\begin{cases}
i\partial_t \psi_t(\mathbf{x}) &= \nabla^{\dagger} \theta_{\omega(t)} \nabla \psi_t(\mathbf{x}) \\
\psi_0(\mathbf{x}) &= \delta_0(\mathbf{x})
\end{cases},$$

then

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2 \right) = e^{-4t \sum_{\theta_1, \theta_2} (k \cdot \theta_1)(k \cdot \theta_2) D_{\theta_1, \theta_2}}.$$

• Consider the standard heat equation

$$\begin{cases}
\partial_t u(x,t) = \Delta u(x,t) & (x,t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
u(x,0) = \delta_0(x) & x \in \mathbb{R}^d
\end{cases}$$

with solution $u(x, t) = (2\pi t)^{-d/2} e^{-|x|^2/4t}$.

• $x \mapsto c_t u(x,t)$ is a p.d.f. on \mathbb{R}^d with $c_t = \left(\int_{\mathbb{R}^d} u(x,t) \, dt\right)^{-1}$ the normalizing constant.

Consider the standard heat equation

$$\begin{cases} \partial_t u(x,t) = \Delta u(x,t) & (x,t) \in \mathbb{R}^d \times \mathbb{R}^+ \\ u(x,0) = \delta_0(x) & x \in \mathbb{R}^d \end{cases}$$

with solution $u(x, t) = (2\pi t)^{-d/2} e^{-|x|^2/4t}$.

• $x\mapsto c_t u(x,t)$ is a p.d.f. on \mathbb{R}^d with $c_t=\left(\int_{\mathbb{R}^d} u(x,t)\,dt\right)^{-1}$ the normalizing constant.

• The pth moment of position is given by

$$\int_{\mathbb{R}^d} |x|^p \, c_t u(x,t) \, dx = \frac{c_t \omega_d}{(2\pi t)^{d/2}} \int_0^\infty r^{p+d-1} e^{-\frac{r^2}{4t}} \, dr,$$

where $\omega_d = |\partial \mathcal{B}(0,1)|$ is the surface area of the unit ball in \mathbb{R}^d .

• The integrand is maximized when $r \propto \sqrt{t}$ which leads us to define . . .

• The pth moment of position is given by

$$\int_{\mathbb{R}^d} |x|^p \, c_t u(x,t) \, dx = \frac{c_t \omega_d}{(2\pi t)^{d/2}} \int_0^\infty r^{p+d-1} e^{-\frac{r^2}{4t}} \, dr,$$

where $\omega_d = |\partial \mathcal{B}(0,1)|$ is the surface area of the unit ball in \mathbb{R}^d .

• The integrand is maximized when $r \propto \sqrt{t}$ which leads us to define . . .

Diffusive Scaling

Definition: Diffusive Scaling

$$\left\{ \begin{array}{ll} t \mapsto \frac{1}{\eta} t \\ x \mapsto \frac{1}{\sqrt{\eta}} x \end{array} \right. \text{ as } \eta \to 0^+$$

- Question: The problem under consideration is defined on the lattice \mathbb{Z}^d . How do we scale a discrete space?
- Answer: Mollify.

Diffusive Scaling

Definition: Diffusive Scaling

$$\left\{ \begin{array}{ll} t \mapsto \frac{1}{\eta} t \\ x \mapsto \frac{1}{\sqrt{\eta}} x \end{array} \right. \text{ as } \eta \to 0^+$$

- Question: The problem under consideration is defined on the lattice \mathbb{Z}^d . How do we scale a discrete space?
- Answer: Mollify.

Diffusive Scaling

Definition: Diffusive Scaling

$$\left\{ \begin{array}{ll} t \mapsto \frac{1}{\eta} t \\ x \mapsto \frac{1}{\sqrt{\eta}} x \end{array} \right. \text{ as } \eta \to 0^+$$

- Question: The problem under consideration is defined on the lattice \mathbb{Z}^d . How do we scale a discrete space?
- Answer: Mollify.

- $h \in C_c^{\infty}(\mathbb{R}^d)$, $\int h \, dx = 1$, $h \geq 0$
- Under diffusive scaling, if the convolution $h*|\psi_t|^2$ converges (weakly) to a solution of the heat equation, then we say that the model exhibits *diffusion*.
- A Fourier transform removes the mollifier from our diffusion criterion.
- Diffusion Criterion:

$$\sum_{\mathbf{x}\in\mathbb{Z}^d} e^{i\sqrt{\eta}k\cdot\mathbf{x}} |\psi_{t/\eta}(\mathbf{x})|^2 \to e^{-Dt|\mathbf{k}|^2}, \quad \mathbf{k}\in\mathbb{T}^d$$

- $h \in C_c^{\infty}(\mathbb{R}^d)$, $\int h \, dx = 1$, $h \geq 0$
- Under diffusive scaling, if the convolution $h*|\psi_t|^2$ converges (weakly) to a solution of the heat equation, then we say that the model exhibits *diffusion*.
- A Fourier transform removes the mollifier from our diffusion criterion.
- Diffusion Criterion:

$$\sum_{\mathbf{x}\in\mathbb{Z}^d} e^{i\sqrt{\eta}k\cdot\mathbf{x}} |\psi_{t/\eta}(\mathbf{x})|^2 \to e^{-Dt|\mathbf{k}|^2}, \quad \mathbf{k}\in\mathbb{T}^d$$

- $h \in C_c^{\infty}(\mathbb{R}^d)$, $\int h \, dx = 1$, $h \geq 0$
- Under diffusive scaling, if the convolution $h*|\psi_t|^2$ converges (weakly) to a solution of the heat equation, then we say that the model exhibits *diffusion*.
- A Fourier transform removes the mollifier from our diffusion criterion.
- Diffusion Criterion:

$$\sum_{\mathbf{x}\in\mathbb{Z}^d} e^{i\sqrt{\eta}k\cdot\mathbf{x}} |\psi_{t/\eta}(\mathbf{x})|^2 \to e^{-Dt|\mathbf{k}|^2}, \quad \mathbf{k}\in\mathbb{T}^d$$

- $h \in C_c^{\infty}(\mathbb{R}^d)$, $\int h \, dx = 1$, $h \geq 0$
- Under diffusive scaling, if the convolution $h*|\psi_t|^2$ converges (weakly) to a solution of the heat equation, then we say that the model exhibits *diffusion*.
- A Fourier transform removes the mollifier from our diffusion criterion.
- Diffusion Criterion:

$$\sum_{\mathbf{x}\in\mathbb{Z}^d} e^{i\sqrt{\eta}\mathbf{k}\cdot\mathbf{x}} |\psi_{t/\eta}(\mathbf{x})|^2 \to e^{-Dt|\mathbf{k}|^2}, \quad \mathbf{k}\in\mathbb{T}^d$$

$$\sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2)$$

$$= -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle d\mathbf{z}$$

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}\sqrt{\eta}k+B)}$,
 - which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)}=rac{1}{2\pi i}\int_{\Gamma}e^{tZ}rac{1}{i\hat{L}_{\sqrt{\eta}k}+B-z}\,\mathrm{d}z$$

• Key step:

$$\begin{split} & \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2) \\ & = -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle \, d\mathbf{z} \end{split}$$

Notes:

- The LHS is (almost) the diffusion criterion.
- The expectation allows us to use a Feynman-Kac-Pillet formula.
- FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}\sqrt{\eta}k+B)}$,
- which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i\hat{L}_{\sqrt{\eta}k}+B-z} dz$$

$$\begin{split} & \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2) \\ & = -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle \, d\mathbf{z} \end{split}$$

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}\sqrt{\eta}k+B)}$,
 - which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i\hat{L}_{\sqrt{\eta}k}+B-z} dz$$

$$\begin{split} & \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2) \\ & = -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle \, d\mathbf{z} \end{split}$$

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}\sqrt{\eta}k+B)}$,
 - which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i\hat{L}_{\sqrt{\eta}k} + B - z} dz$$

$$\begin{split} & \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2) \\ & = -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle \, d\mathbf{z} \end{split}$$

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}_{\sqrt{\eta}k}+B)}$,
 - which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i\hat{L}_{\sqrt{\eta}k}+B-z} dz$$

$$\begin{split} &\sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}(|\psi_{t/\eta}(\mathbf{x})|^2) \\ &= -\frac{1}{2\pi i} \int_{\Gamma} e^{-t\mathbf{z}} \left\langle \delta_0 \otimes \mathbf{1}, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta \mathbf{z}} \delta_0 \otimes \mathbf{1} \right\rangle d\mathbf{z} \end{split}$$

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup $e^{-t(i\hat{L}_{\sqrt{\eta}k}+B)}$,
 - which can be understood by the holomorphic functional calculus:

$$e^{t(i\hat{L}_{\sqrt{\eta}k}+B)}=rac{1}{2\pi i}\int_{\Gamma}e^{tz}rac{1}{i\hat{L}_{\sqrt{\eta}k}+B-z}\,dz$$

• We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta z} \, \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k , which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.
- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2\right) = e^{-4t\sum_{e_1,e_2}(k \cdot e_1)(k \cdot e_2)D_{e_1,e_2}},$$

• We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta z} \, \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k , which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.
- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2\right) = e^{-4t\sum_{e_1,e_2}(k \cdot e_1)(k \cdot e_2)D_{e_1,e_2}},$$

• We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta z} \, \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k , which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.
- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2\right) = e^{-4t\sum_{e_1,e_2}(k \cdot e_1)(k \cdot e_2)D_{e_1,e_2}},$$

• We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta z} \, \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k , which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.
- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2\right) = e^{-4t\sum_{\mathbf{e}_1,\mathbf{e}_2}(k \cdot \mathbf{e}_1)(k \cdot \mathbf{e}_2)D_{\mathbf{e}_1,\mathbf{e}_2}},$$

• We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}_{\sqrt{\eta}k} + B - \eta z} \, \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k , which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.
- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{\mathbf{x} \in \mathbb{Z}^d} e^{i\sqrt{\eta} k \cdot \mathbf{x}} \mathbb{E}\left(|\psi_{t/\eta}(\mathbf{x})|^2 \right) = e^{-4t\sum_{e_1,e_2}(k \cdot e_1)(k \cdot e_2)D_{e_1,e_2}},$$

Thank You & References

Thank you!

Klaus-Jochen Engel and Rainer Nagel.

One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics.

Springer-Verlag, 2000.

Claude-Alain Pillet.

Some results on the quantum dynamics of a particle in a markovian potential.

Communications in Mathematical Physics, 102(2):237–25/1985.

Thank You & References

Thank you!

- Yang Kang and Jeffrey Schenker.

 Diffusion of wave packets in a markov random potential.

 Journal of Statistical Physics, 134:1005–1022, 1005.
 - Claude-Alain Pillet.

 Some results on the quantum dynamics of a particle in a markovian potential.

 Communications in Mathematical Physics, 102(2):237–25, 1025

Thank You & References

Thank you!

- Klaus-Jochen Engel and Rainer Nagel.

 One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics.

 Springer-Verlag, 2000.
- Yang Kang and Jeffrey Schenker.

 Diffusion of wave packets in a markov random potential.

 Journal of Statistical Physics, 134:1005–1022, 1005.
- Claude-Alain Pillet. Some results on the quantum dynamics of a particle in a markovian potential.

Communications in Mathematical Physics, 102(2):237–254 1985.